- -

Reutilización de software en la robótica industrial: un mapeo sistemático

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Reutilización de software en la robótica industrial: un mapeo sistemático

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Solis, A. es_ES
dc.contributor.author Hurtado, J. es_ES
dc.date.accessioned 2020-10-05T12:10:36Z
dc.date.available 2020-10-05T12:10:36Z
dc.date.issued 2020-09-30
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/151142
dc.description.abstract [ES] Existe una tendencia a utilizar los enfoques de reutilización de software en el dominio de los sistemas robóticos industriales, con el fin de acelerar su desarrollo. Aunque algunos estudios muestran los beneficios de desarrollar usando diferentes enfoques de reutilización, estas prácticas no se han incorporado masivamente en la industria, principalmente, debido al desarrollo de software propietario por parte de los fabricantes y a la diversidad del hardware subyacente. Sin embargo, estos estudios han sido de gran valor para avanzar en su adopción. A través de un mapeo sistemático de la literatura, se muestra la adopción de los diferentes enfoques de reutilización, dentro de los cuales se analizan los más utilizados como la ingeniería dirigida por modelos MDE (Model-Driven Engineering), el desarrollo basado en componentes CBSE (Component-based Software Engineering) y la arquitectura basada en servicios (SOA). Por otro lado, se analizan los marcos de trabajo por ser las soluciones más utilizados y en términos de herramientas, se enfatiza en ROS (Robot Operating System) como una plataforma de referencia para el desarrollo rápido de aplicaciones. El principal reto identificado en esta área de estudio es definir estrategias combinadas y prácticas de los enfoques de reutilización MDE, CBSE y SOA, con el fin de aprovechar las diferentes ventajas de reutilización que cada uno ofrece. es_ES
dc.description.abstract [EN] There is a tendency to use software reuse approaches in the domain of industrial robotic systems, to accelerate their development. Although some studies show the benefits of developing using different reuse approaches, these practices have not been massively incorporated in the industry, mainly due to the development of proprietary software by manufacturers and the diversity of the underlying hardware. However, these studies have been of great value in advancing their adoption. Through a systematic mapping of the literature, the adoption of different reuse approaches is shown, within which the most widely used are analyzed, such as Model-Driven Engineering (MDE), Component-based Software Engineering (CBSE) and Service-Oriented Architecture (SOA). On the other hand, the frameworks are analyzed because they are the most used solutions and in terms of tools, ROS (Robot Operating System) is emphasized as a reference platform for the rapid development of applications. The main challenge identified in this area of study is to define combined and practical strategies of the MDE, CBSE, and SOA reuse approaches, to take advantage of the different reuse advantages that each one offers.  es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Reusability es_ES
dc.subject Industrial robotics es_ES
dc.subject Robotic manipulator es_ES
dc.subject Robot programming es_ES
dc.subject Reutilización es_ES
dc.subject Robótica industrial es_ES
dc.subject Manipulador robótico es_ES
dc.subject Programación de robots es_ES
dc.title Reutilización de software en la robótica industrial: un mapeo sistemático es_ES
dc.title.alternative Software reuse in industrial robotics: A systematic mapping es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2020.13335
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Solis, A.; Hurtado, J. (2020). Reutilización de software en la robótica industrial: un mapeo sistemático. Revista Iberoamericana de Automática e Informática industrial. 17(4):354-367. https://doi.org/10.4995/riai.2020.13335 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2020.13335 es_ES
dc.description.upvformatpinicio 354 es_ES
dc.description.upvformatpfin 367 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\13335 es_ES
dc.description.references Adi, W., Sekiyama, K., 2015. A component-based framework for molecular robotic development as smart drug system, in: 2015 International Symposium on Micro-NanoMechatronics and Human Science (MHS). Presented at the 2015 International Symposium on Micro-NanoMechatronics and Human Science (MHS), IEEE, Nagoya, Japan, pp. 1-5. https://doi.org/10.1109/MHS.2015.7438319 es_ES
dc.description.references Ahmad, A., Babar, M.A., 2016. Software architectures for robotic systems: A systematic mapping study. Journal of Systems and Software 122, 16-39. https://doi.org/10.1016/j.jss.2016.08.039 es_ES
dc.description.references Arne, N., Nico, H., Dennis, W., Sebastian, W., 2016. A survey on domain- specific modeling and languages in robotics. Journal of Software Engineering for Robotics 7, 75-99. es_ES
dc.description.references Backhaus, J., Reinhart, G., 2017. Digital description of products, processes and resources for task-oriented programming of assembly systems. J Intell Manuf 28, 1787-1800. https://doi.org/10.1007/s10845-015-1063-3 es_ES
dc.description.references Bandi, A., Williams, B.J., Allen, E.B., 2013. Empirical evidence of code decay: A systematic mapping study, in: 2013 20th Working Conference on Reverse Engineering (WCRE). Presented at the 2013 20th Working Conference on Reverse Engineering (WCRE), IEEE, Koblenz, Germany, pp. 341-350. https://doi.org/10.1109/WCRE.2013.6671309 es_ES
dc.description.references Beck, J.E., Reagin, J.M., Sweeny, T.E., Anderson, R.L., Garner, T.D., 2000. Applying a component-based software architecture to robotic workcell applications. IEEE Trans. Robot. Automat. 16, 207-217. https://doi.org/10.1109/70.850639 es_ES
dc.description.references Bhavsar, P., Patel, S.H., Sobh, T.M., 2019. Hybrid Robot-as-a-Service (RaaS) Platform (Using MQTT and CoAP). Presented at the 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), IEEE, Atlanta, GA, USA, pp. 974-979. https://doi.org/10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00 171 es_ES
dc.description.references Brugali, D., 2015. Model-Driven Software Engineering in Robotics: Models Are Designed to Use the Relevant Things, Thereby Reducing the Complexity and Cost in the Field of Robotics. IEEE Robot. Automat. Mag. 22, 155-166. https://doi.org/10.1109/MRA.2015.2452201 es_ES
dc.description.references Brugali, D. (Ed.), 2007. Software Engineering for Experimental Robotics, Springer Tracts in Advanced Robotics. Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68951-5 es_ES
dc.description.references Brugali, D., Hochgeschwender, N., 2018. Software product line engineering for robotic perception systems. International Journal of Semantic Computing 12, 89-107. https://doi.org/10.1142/S1793351X18400056 es_ES
dc.description.references Brugali, D., Scandurra, P., 2009. Component-based robotic engineering (Part I) [Tutorial]. IEEE Robot. Automat. Mag. 16, 84-96. https://doi.org/10.1109/MRA.2009.934837 es_ES
dc.description.references Bruyninckx, H., Klotzbücher, M., Hochgeschwender, N., Kraetzschmar, G., Gherardi, L., Brugali, D., 2013. The BRICS component model: a model- based development paradigm for complex robotics software systems, in: Proceedings of the 28th Annual ACM Symposium on Applied Computing - SAC '13. Presented at the the 28th Annual ACM Symposium, ACM Press, Coimbra, Portugal, p. 1758. https://doi.org/10.1145/2480362.2480693 es_ES
dc.description.references Bubeck, A., Maidel, B., Lopez, F.G., 2014. Model Driven Engineering for the Implementation of User Roles in Industrial Service Robot Applications. Procedia Technology 15, 605-612. https://doi.org/10.1016/j.protcy.2014.09.021 es_ES
dc.description.references Chen, Y., Du, Z., García-Acosta, M., 2010. Robot as a Service in Cloud Computing, in: 2010 Fifth IEEE International Symposium on Service Oriented System Engineering. Presented at the 2010 Fifth International Symposium on Service Oriented System Engineering (SOSE), IEEE, Nanjing, China, pp. 151-158. https://doi.org/10.1109/SOSE.2010.44 es_ES
dc.description.references Ciccozzi, F., Di Ruscio, D., Malavolta, I., Pelliccione, P., Tumova, J., 2017. Engineering the software of robotic systems, in: 2017 IEEE/ACM 39th International Conference on Software Engineering Companion (ICSE-C). Presented at the 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE), IEEE, Buenos Aires, pp. 507-508. https://doi.org/10.1109/ICSE-C.2017.167 es_ES
dc.description.references Degueule, T., Combemale, B., Blouin, A., Barais, O., Jézéquel, J.-M., 2017. Safe model polymorphism for flexible modeling. Computer Languages, Systems & Structures 49, 176-195. https://doi.org/10.1016/j.cl.2016.09.001 es_ES
dc.description.references Doukas, G., Thramboulidis, K., 2011. A Real-Time-Linux-Based Framework for Model-Driven Engineering in Control and Automation. IEEE Trans. Ind. Electron. 58, 914-924. https://doi.org/10.1109/TIE.2009.2029584 es_ES
dc.description.references Estefo, P., Simmonds, J., Robbes, R., Fabry, J., 2019. The Robot Operating System: Package reuse and community dynamics. Journal of Systems and Software 151, 226-242. https://doi.org/10.1016/j.jss.2019.02.024 es_ES
dc.description.references Estévez, E., García, A.S., García, J.G., Ortega, J.G., 2018. ART2ool: a model- driven framework to generate target code for robot handling tasks. Int J Adv Manuf Technol 97, 1195-1207. https://doi.org/10.1007/s00170-018- 1976-z es_ES
dc.description.references Estévez, E., Sánchez García, A., Gámez García, J., Gómez Ortega, J., 2017. Aproximación Basada en UML para el Diseño y Codificación Automática de Plataformas Robóticas Manipuladoras. Revista Iberoamericana de Automática e Informática Industrial RIAI 14, 82-93. https://doi.org/10.1016/j.riai.2016.11.001 es_ES
dc.description.references Estévez, E., Sánchez-García, A., Gámez-García, J., Gómez-Ortega, J., Satorres-Martínez, S., 2016. A novel model-driven approach to support development cycle of robotic systems. Int J Adv Manuf Technol 82, 737- 751. https://doi.org/10.1007/s00170-015-7396-4 es_ES
dc.description.references Gherardi, L., Brugali, D., 2014. Modeling and reusing robotic software architectures: The HyperFlex toolchain, in: 2014 IEEE International Conference on Robotics and Automation (ICRA). Presented at the 2014 IEEE International Conference on Robotics and Automation (ICRA), IEEE, Hong Kong, China, pp. 6414-6420. https://doi.org/10.1109/ICRA.2014.6907806 es_ES
dc.description.references Gorecki, S., Ducq, Y., Ribault, J., Zacharewicz, G., Perry, N., 2019. Distributed Simulation For A Modeling And Simulation Tool: Papyrus, in: 2019 Spring Simulation Conference (SpringSim). Presented at the 2019 Spring Simulation Conference (SpringSim), IEEE, Tucson, AZ, USA, pp. 1-12. https://doi.org/10.23919/SpringSim.2019.8732868 es_ES
dc.description.references Guerin, K.R., Riedel, S.D., Bohren, J., Hager, G.D., 2014. Adjutant: A framework for flexible human-machine collaborative systems, in: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Presented at the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), IEEE, Chicago, IL, USA, pp. 1392-1399. https://doi.org/10.1109/IROS.2014.6942739 es_ES
dc.description.references Haage, M., Piperagkas, G., Papadopoulos, C., Mariolis, I., Malec, J., Bekiroglu, Y., Hedelind, M., Tzovaras, D., 2017. Teaching Assembly by Demonstration Using Advanced Human Robot Interaction and a Knowledge Integration Framework. Procedia Manufacturing 11, 164-173. https://doi.org/10.1016/j.promfg.2017.07.221 es_ES
dc.description.references Hu, B., Wang, H., Zhang, P., Ding, B., Che, H., 2017. Cloudroid: A Cloud Framework for Transparent and QoS-Aware Robotic Computation Outsourcing, in: 2017 IEEE 10th International Conference on Cloud Computing (CLOUD). Presented at the 2017 IEEE 10th International Conference on Cloud Computing (CLOUD), IEEE, Honolulu, CA, USA, pp. 114-121. https://doi.org/10.1109/CLOUD.2017.23 es_ES
dc.description.references Jawawi, D., Deris, S., Mamat, R., 2007. Software Reuse for Mobile Robot Applications Through Analysis Patterns. The International Arab Journal of Information Technology 4, 9. es_ES
dc.description.references Kitchenham, B., 2004. Procedures for Performing Systematic Reviews. Keele, UK, Keele Univ. 33, 1-26. es_ES
dc.description.references Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., Linkman, S., 2009. Systematic literature reviews in software engineering - A systematic literature review. Information and Software Technology 51, 7-15. https://doi.org/10.1016/j.infsof.2008.09.009 es_ES
dc.description.references Lotz, A., Hamann, A., Lange, R., Heinzemann, C., Staschulat, J., Kesel, V., Stampfer, D., Lutz, M., Schlegel, C., 2016. Combining robotics component-based model-driven development with a model-based performance analysis, in: 2016 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR). Presented at the 2016 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR), IEEE, San Francisco, CA, USA, pp. 170-176. https://doi.org/10.1109/SIMPAR.2016.7862392 es_ES
dc.description.references Lunghi, G., Marin, R., Di Castro, M., Masi, A., Sanz, P.J., 2019. Multimodal Human-Robot Interface for Accessible Remote Robotic Interventions in Hazardous Environments. IEEE Access 7, 127290-127319. https://doi.org/10.1109/ACCESS.2019.2939493 es_ES
dc.description.references Maurtua, I., Fernández, I., Tellaeche, A., Kildal, J., Susperregi, L., Ibarguren, A., Sierra, B., 2017. Natural multimodal communication for human-robot collaboration. International Journal of Advanced Robotic Systems 14, 172988141771604. https://doi.org/10.1177/1729881417716043 es_ES
dc.description.references Möckel, R., Dahl, L., Christopher, S.M., 2020. Interdisciplinary Teaching with the Versatile Low-Cost Modular Robotic Platform EDMO, in: Moro, M., Alimisis, D., Iocchi, L. (Eds.), Educational Robotics in the Context of the Maker Movement. Springer International Publishing, Cham, pp. 135-146. https://doi.org/10.1007/978-3-030-18141-3_11 es_ES
dc.description.references Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M., 2008. Systematic Mapping Studies in Software Engineering. Presented at the 12th International Conference on Evaluation and Assessment in Software Engineering (EASE). https://doi.org/10.14236/ewic/EASE2008.8 es_ES
dc.description.references Pons, C., Giandini, R., Arévalo, G., 2012. A systematic review of applying modern software engineering techniques to developing robotic systems. Ingeniería e Investigación 32, 58-63. es_ES
dc.description.references Pons, C., Pérez, G., Giandini, R., Neil, C., de Vincenzi, M., 2017. Ingeniería de Software Dirigida por Modelos Aplicada a Sistemas Robóticos Usando los Estándares de la OMG. Presented at the XIX Workshop de Investigadores en Ciencias de la Computación, Buenos Aires, pp. 555-559. es_ES
dc.description.references Rastogi, N., Dutta, P., Krishna, V., Gotewal, K.K., 2017. Implementation of an OROCOS based Real-Time Equipment Controller for Remote Maintenance of Tokamaks, in: Proceedings of the Advances in Robotics on - AIR '17. Presented at the the Advances in Robotics, ACM Press, New Delhi, India, pp. 1-6. https://doi.org/10.1145/3132446.3134900 es_ES
dc.description.references Ronchieri, E., Canaparo, M., 2019. Metrics for Software Reliability: a Systematic Mapping Study. JID 22, 5-25. https://doi.org/10.3233/jid- 2018-0008 es_ES
dc.description.references ROS.org | Powering the world's robots [WWW Document], 2020. . ROS.org | Powering the world's robots. URL http://www.ros.org/ (accessed 5.18.20). Rudorfer, M., Guhl, J., Hoffmann, P., Kruger, J., 2018. Holo Pick'n'Place. Presented at the IEEE International Conference on Emerging Technologies and Factory Automation, ETFA, pp. 1219-1222. https://doi.org/10.1109/ETFA.2018.8502527 es_ES
dc.description.references Salman, S.M., Struhar, V., Papadopoulos, A.V., Behnam, M., Nolte, T., 2019. Fogification of Industrial Robotic Systems: Research Challenges, in: Proceedings of the Workshop on Fog Computing and the IoT, IoT-Fog '19. Association for Computing Machinery, New York, NY, USA, pp. 41-45. https://doi.org/10.1145/3313150.3313225 es_ES
dc.description.references Smith, R., Smith, G., Wardani, A., 2005. Software reuse in robotics: Enabling portability in the face of diversity, in: IEEE Conference on Robotics, Automation and Mechatronics, 2004. Presented at the 2004 IEEE Conference on Robotics, Automation and Mechatronics, IEEE, Singapore, pp. 933-938. https://doi.org/10.1109/RAMECH.2004.1438043 es_ES
dc.description.references Souza, F.C., Santos, A., Andrade, S., Durelli, R., Durelli, V., Oliveira, R., 2018. Automating Search Strings for Secondary Studies, in: Latifi, S. (Ed.), Information Technology - New Generations, Advances in Intelligent Systems and Computing. Springer International Publishing, Cham, pp. 839-848. https://doi.org/10.1007/978-3-319-54978-1_104 es_ES
dc.description.references Stenmark, M., Haage, M., Topp, E.A., 2017. Simplified Programming of Re- usable Skills on a Safe Industrial Robot: Prototype and Evaluation, in: Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot Interaction. Presented at the HRI '17: ACM/IEEE International Conference on Human-Robot Interaction, ACM, Vienna Austria, pp. 463-472. https://doi.org/10.1145/2909824.3020227 es_ES
dc.description.references Sun, Y., Gray, J., Bulheller, K., von Baillou, N., 2012. A Model-Driven Approach to Support Engineering Changes in Industrial Robotics Software, in: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (Eds.), Model Driven Engineering Languages and Systems, Lecture Notes in Computer Science. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 368-382. https://doi.org/10.1007/978-3-642-33666-9_24 es_ES
dc.description.references Tibermacine, C., Sadou, S., Ton That, M.T., Dony, C., 2016. Software architecture constraint reuse-by-composition. Future Generation Computer Systems 61, 37-53. https://doi.org/10.1016/j.future.2016.02.006 es_ES
dc.description.references Trapani, S., Indri, M., 2017. Task modeling for task-oriented robot programming, in: 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). Presented at the 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), IEEE, Limassol, pp. 1-8. https://doi.org/10.1109/ETFA.2017.8247650 es_ES
dc.description.references Vrochidou, E., Manios, M., Papakostas, G.A., Aitsidis, C.N., Panagiotopoulos, F., 2018. Open-Source Robotics: Investigation on Existing Platforms and Their Application in Education, in: 26th International Conference on Software, Telecommunications and Computer Networks (SoftCOM). Presented at the 26th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), IEEE, Split, pp. 1-6. https://doi.org/10.23919/SOFTCOM.2018.8555860 es_ES
dc.description.references Vyatkin, V., 2011. IEC 61499 as enabler of distributed and intelligent automation: State-of-the-art review. IEEE transactions on Industrial Informatics 7, 768-781. https://doi.org/10.1109/TII.2011.2166785 es_ES
dc.description.references Wan, J., Tang, S., Yan, H., Li, D., Wang, S., Vasilakos, A.V., 2016. Cloud Robotics: Current Status and Open Issues. IEEE Access 1-1. https://doi.org/10.1109/ACCESS.2016.2574979 es_ES
dc.description.references Wei, H., Duan, X., Li, S., Tong, G., Wang, T., 2009. A component-based design framework for robot software architecture, in: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. Presented at the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009), IEEE, St. Louis, MO, USA, pp. 3429-3434. https://doi.org/10.1109/IROS.2009.5354161 es_ES
dc.description.references Wei, H., Shao, Zhenzhou, Huang, Z., Chen, R., Guan, Y., Tan, J., Shao, Zili, 2016. RT-ROS: A real-time ROS architecture on multi-core processors. Future Generation Computer Systems 56, 171-178. https://doi.org/10.1016/j.future.2015.05.008 es_ES
dc.description.references Wenger, M., Eisenmenger, W., Neugschwandtner, G., Schneider, B., Zoitl, A., 2016. A model-based engineering tool for ROS component compositioning, configuration and generation of deployment information, in: 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA). Presented at the 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), IEEE, Berlin, Germany, pp. 1-8. https://doi.org/10.1109/ETFA.2016.7733559 es_ES
dc.description.references Weyns, D., 2018. Engineering Self-Adaptive Software Systems - An Organized Tour, in: 2018 IEEE 3rd International Workshops on Foundations and Applications of Self* Systems (FAS*W). Presented at the 2018 IEEE 3rd International Workshops on Foundations and Applications of Self* Systems (FAS*W), IEEE, Trento, pp. 1-2. https://doi.org/10.1109/FAS-W.2018.00012 es_ES
dc.description.references Wigand, D.L., Nordmann, A., Goerlich, M., Wrede, S., 2017. Modularization of Domain-Specific Languages for Extensible Component-Based Robotic Systems, in: 2017 First IEEE International Conference on Robotic Computing (IRC). Presented at the 2017 First IEEE International Conference on Robotic Computing (IRC), IEEE, Taichung, Taiwan, pp. 164-171. https://doi.org/10.1109/IRC.2017.34 es_ES
dc.description.references Yassin, N.I.R., Omran, S., El Houby, E.M.F., Allam, H., 2018. Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: A systematic review. Computer Methods and Programs in Biomedicine 156, 25-45. https://doi.org/10.1016/j.cmpb.2017.12.012 es_ES
dc.description.references Yoong, L.H., Bhatti, Z.E., Roop, P.S., 2012. Combining iec 61499 model- based design with component-based architecture for robotics, in: International Conference on Simulation, Modeling, and Programming for Autonomous Robots. Springer, pp. 349-360. https://doi.org/10.1007/978- 3-642-34327-8_32 es_ES
dc.description.references Zug, S., Schulze, M., Dietrich, A., Kaiser, J., 2010. Programming abstractions and middleware for building control systems as networks of smart sensors and actuators, in: 2010 IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010). Presented at the Factory Automation (ETFA 2010), IEEE, Bilbao, pp. 1-8. https://doi.org/10.1109/ETFA.2010.5641341 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem