- -

Association of growth hormone (GH), insulin-like growth factor 2 (IGF2) and progesterone receptor (PGR) genes with some productive traits in Gabali rabbits

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Association of growth hormone (GH), insulin-like growth factor 2 (IGF2) and progesterone receptor (PGR) genes with some productive traits in Gabali rabbits

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ramadan, S.I. es_ES
dc.contributor.author Manaa, E.A. es_ES
dc.contributor.author El-Attrony, M.E. es_ES
dc.contributor.author EL Nagar, A.G. es_ES
dc.date.accessioned 2020-10-06T10:03:40Z
dc.date.available 2020-10-06T10:03:40Z
dc.date.issued 2020-09-30
dc.identifier.issn 1257-5011
dc.identifier.uri http://hdl.handle.net/10251/151206
dc.description.abstract [EN] The objectives of the present study were 1) to evaluate the polymorphism of growth hormone(GH), insulin-like growth factor 2 (IGF2) and progesterone receptor (PGR) genes in Sinai Gabali rabbits, and 2) to assess their associations with growth, litter size and milk production traits in Sinai Gabali rabbits. The C>T, A>Del and A>G single nucleotide polymorphisms of GH, IGF2 and PGR genes were genotyped by polymerase chain reaction-restriction fragment length polymorphism using BstUI, HpyF31 and BsaI restriction enzymes, respectively. The C/T genotype of GH gene recorded the heaviest body weights for body weight (BW) at 8 wk (1190.22±19.29 g) and 12 wk of age (1842.46±30.19 g) and recorded the largest litter size at birth (LSB: 7.37±0.12 kits) traits. The Del/Del genotype of IGF2 gene showed the superiority over the other genotypes for BW at 4 wk (507.17±8.87 g), 8 wk (1239.39±14.0 g), and 12 wk of age (1950.15±18.1 g), as well as for daily weight gain from 4 to 8 wk (26.05±0.37 g/d), and from 8 to 12 wk of age (25.48±0.56 g/d) traits. The G/G genotype of the PGR gene showed superiority for LSB (7.51±0.13 kits) and litter size at weaning (6.53±0.14 kits) traits over the other genotypes. Regarding milk yield traits; the C/C, A/A and A/A genotypes of GH, IGF2 and PGR genes yielded more milk compared to the other genotypes. The means of total milk yield in 28 d for these genotypes were 2936±29 g, 2921±43 g and 2930±35 g, respectively. Thus, GH, IGF2 and PGR genes might be useful for marker-assisted selection programmes for improvement of rabbit growth, litter size and milk yield traits. es_ES
dc.description.sponsorship This work was supported by the research project “Genetic improvement of local rabbit breeds using molecular genetic techniques” from the Scientific Research Fund (SRF), Benha University, Egypt. The English revision of the manuscript conducted by Mr. Roderick Cantlay-Hollis is also acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof World Rabbit Science es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Gene polymorphism es_ES
dc.subject Growth es_ES
dc.subject Litter size es_ES
dc.subject Milk yield es_ES
dc.subject PCR es_ES
dc.subject RFLP es_ES
dc.subject Rabbits es_ES
dc.title Association of growth hormone (GH), insulin-like growth factor 2 (IGF2) and progesterone receptor (PGR) genes with some productive traits in Gabali rabbits es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/wrs.2020.12610
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Ramadan, S.; Manaa, E.; El-Attrony, M.; El Nagar, A. (2020). Association of growth hormone (GH), insulin-like growth factor 2 (IGF2) and progesterone receptor (PGR) genes with some productive traits in Gabali rabbits. World Rabbit Science. 28(3):135-144. https://doi.org/10.4995/wrs.2020.12610 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/wrs.2020.12610 es_ES
dc.description.upvformatpinicio 135 es_ES
dc.description.upvformatpfin 144 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 28 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 1989-8886
dc.relation.pasarela OJS\12610 es_ES
dc.contributor.funder Benha University es_ES
dc.description.references Abd El-Ghany S.M. 2015 Genetic studies on growth hormone as a physiological indicator in rabbits. M.Sc. Thesis, Faculty of Agriculture, Cairo University, Cairo, Egypt. es_ES
dc.description.references Abdel-Kafy E., Gafer J., Shaaban H. 2014. Impact of insulin-like growth factor-II polymorphisms on growth and reproductive traits in rabbits. Arab J. Biotechnol., 17: 121-132. es_ES
dc.description.references Abdel-Kafy E., Hussein B., Abdel-Ghany S., El-Din A., Badawi Y. 2015. Single nucleotide polymorphisms in growth hormone gene are associated with some performance traits in Rabbit. IJBPAS. 4: 490-504. es_ES
dc.description.references Afifi E. 2002. The Gabali Rabbits (Egypt). In: Khalil M.H. (ed.), Baselga M. (ed.). Rabbit genetic resources in Mediterranean countries. Zaragoza: CIHEAM, (Options Méditerranéennes: Série B. Etudes et Recherches). 38: 55-64. es_ES
dc.description.references Amalianingsih T., Brahmantiyo B. 2014. The Variability of Growth Hormone Gene Associated with Ultrasound Imaging of Longissimus dorsi Muscle and Perirenal Fat in Rabbits. Media Peternakan. 37: 1-7. https://doi.org/10.5398/medpet.2014.37.1.1 es_ES
dc.description.references Argente M., Merchán M., Peiró R., García M., Santacreu M., Folch J., Blasco A. 2010. Candidate gene analysis for reproductive traits in two lines of rabbits divergently selected for uterine capacity. J. Anim. Sci., 88: 828-836. https://doi.org/10.2527/jas.2009-2324 es_ES
dc.description.references Badr O.A., EL-Shawaf I.S., Khalil M.H., Refaat M.H., El-Zarei M.F. 2016. Assessment of genetic variability among some rabbit breeds using RAPD-DNA technique. 2016. 3rd International Conference On Biotechnology Applications In Agriculture, Benha University, Moshtohor and Sharm El-Sheikh, 5-9, April, Egypt. pp 1-5. es_ES
dc.description.references Badr O., El-Shawaf I., Khalil M., Refaat M., Ramadan S. 2019. Molecular genetic diversity and conservation priorities of Egyptian rabbit breeds. World Rabbit Sci., 27: 135-141. https://doi.org/10.4995/wrs.2019.8923 es_ES
dc.description.references Bagnicka E., Siadkowska E., Strzałkowska N., Żelazowska B., Flisikowski K., Krzyżewski J., Zwierzchowski L. 2010. Association of polymorphisms in exons 2 and 10 of the insulin-like growth factor 2 (IGF2) gene with milk production traits in Polish Holstein-Friesian cattle. J. Dairy Res., 77: 37-42. https://doi.org/10.1017/S0022029909990197 es_ES
dc.description.references Buys N., Abeele G., Stinckens A., Deley J., Georges M. 2006 Effect of the IGF2-intron3-G3072A mutation on prolificacy in sows. In Proc.: 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, Minas Gerais, Brazil, 13-18 August, 2006. Instituto Prociência, pp. 06-22. es_ES
dc.description.references Cartuche L., Pascual M., Gómez E., Blasco A. 2014. Economic weights in rabbit meat production. World Rabbit Sci., 22: 165-177. https://doi.org/10.4995/wrs.2014.1747 es_ES
dc.description.references Conneely O.M., Mulac-Jericevic B., Demayo F., Lydon J.P., O'Malley B.W. 2002. Reproductive functions of progesterone receptors. Recent. Prog. Horm. Res., 57: 339-356. https://doi.org/10.1210/rp.57.1.339 es_ES
dc.description.references El-Aksher S.H., Sherif H., Khalil M., El-Garhy H.A., Ramadan S. 2017. Molecular analysis of a new synthetic rabbit line and their parental populations using microsatellite and SNP markers. Gene Rep., 8: 17-23. https://doi.org/10.1016/j.genrep.2017.05.001 es_ES
dc.description.references Fontanesi L., Dall'Olio S., Spaccapaniccia E., Scotti E., Fornasini D., Frabetti A., Russo V. 2012a. A single nucleotide polymorphism in the rabbit growth hormone (GH1) gene is associated with market weight in a commercial rabbit population. Livest. Sci., 147: 84-88. https://doi.org/10.1016/j.livsci.2012.04.006 es_ES
dc.description.references Fontanesi L., Mazzoni G., Bovo S., Frabetti A., Fornasini D., Dall'Olio S., Russo V. 2012b. Association between a polymorphism in the IGF 2 gene and finishing weight in a commercial rabbit population. Anim. Genet., 43: 651-652. https://doi.org/10.1111/j.1365-2052.2012.02318.x es_ES
dc.description.references Fontanesi L., Tazzoli M., Scotti E., Russo V. 2008 Analysis of candidate genes for meat production traits in domestic rabbit breeds. In Proc.: 9th World Rabbit Congress, 10-13 June 2008, Verona, Italy. pp. 79-84. es_ES
dc.description.references Fouzia K.B., Homrani A., Ammam A. 2017. Population structure and genetic diversity using microsatellite markers of four Algerian rabbit populations precludes hybridization with foreign breeds. SAJEB. 7: 191-200. es_ES
dc.description.references Gad S. 1998 Evaluation of growth and production performance of Al-Gabali rabbits and their crosses under semi-arid conditions. M. Sc. Thesis, Faculty of Agriculture, Moshtohor, Zagazig, University, Benha. es_ES
dc.description.references Galal O.A,, Rehan M., Abd El-Karim R.E. 2013. Analysis of genetic diversity within and among four rabbit genotypes using biochemical and molecular genetic markers. Afr. J. Biotechnol., 12: 2830-2839. https://www.ajol.info/index.php/ajb/article/view/131265 es_ES
dc.description.references García M., Peiró R., Argente M., Merchán M., Folch J., Blasco A., Santacreu M. 2010. Investigation of the oviductal glycoprotein 1 (OVGP1) gene associated with embryo survival and development in the rabbit. J. Anim. Sci., 88: 1597-1602. https://doi.org/10.2527/jas.2009-2042 es_ES
dc.description.references Hull K., Harvey S. 2002. GH as a co-gonadotropin: the relevance of correlative changes in GH secretion and reproductive state. J. Endocrinol., 172: 1-19. https://doi.org/10.1677/joe.0.1720001 es_ES
dc.description.references Husvéth F. 2011. Physiological and reproductional aspects of animal production. Debrecen University, University of West Hungary, Pannon University. p3. es_ES
dc.description.references Iraqi M., García M., Khalil M., Baselga M. 2010a. Evaluation of milk yield and some related maternal traits in a crossbreeding project of Egyptian Gabali breed with Spanish V-line in rabbits. J. Anim. Breed. Genet., 127: 242-248. https://doi.org/10.1111/j.1439-0388.2009.00825.x es_ES
dc.description.references Iraqi M., Shenana M., Baselga M. 2010b. Some factors affecting production and milk composition characters in a crossbreeding experiment involving Gabali and V-line rabbits in Egypt. World Rabbit Sci., 15: 151-159. https://doi.org/10.4995/wrs.2007.594 es_ES
dc.description.references Khalil M. 1999. Rabbit genetic resources of Egypt. Animal Genetic Resources (FAO). 26: 95-111. https://doi.org/10.1017/S101423390000122X es_ES
dc.description.references Khalil M., Afifi E. 2000 Heterosis, maternal and direct additive effects for litter performance and postweaning growth in Gabali rabbits and their F1 crosses with New Zealand White. In Proc.: 7th World Rabbit Congress, Valencia, Spain. pp. 4-7. es_ES
dc.description.references Khalil M., Baselga M., 2002 Rabbit genetic resources in Mediterranean countries. In Khalil M. H. and M. Baselga (eds), Options Méditerranéennes. CIHEAM-IAMZ, Zaragoza, Spain, pp. 262. es_ES
dc.description.references Lucy M. 2008. Functional differences in the growth hormone and insulin-like growth factor axis in cattle and pigs: implications for post-partum nutrition and reproduction. Reprod. Domest. Anim., 43: 31-39. https://doi.org/10.1111/j.1439-0531.2008.01140.x es_ES
dc.description.references McNitt J., Lukefahr S. 1990. Effects of breed, parity, day of lactation and number of kits on milk production of rabbits. J. Anim. Sci., 68: 1505-1512. https://doi.org/10.2527/1990.6861505x es_ES
dc.description.references Merchán M., Peiró R., Argente M., Santacreu M., García M., Blasco A., Folch J. 2009. Analysis of the oviductal glycoprotein 1 polymorphisms and their effects on components of litter size in rabbits. Anim. Genet., 40: 756-758. https://doi.org/10.1111/j.1365-2052.2009.01898.x es_ES
dc.description.references Misztal I., Tsuruta S., Strabel T., Auvray B., Druet T., Lee D., 2002 BLUPF90 and related programs (BGF90). In Proc.: 7th world congress on genetics applied to livestock production. pp. 743-744. es_ES
dc.description.references Mohamed E.A., Abdelfatah M.G. 2018. Genetic diversity assessment among six rabbit breeds using RAPD and SRAP markers. Egypt. J. Genet. Cytol., 47: 161-173. http://journal.esg.net.eg/index.php/EJGC/article/view/282 es_ES
dc.description.references Mullen M., Lynch C., Waters S., Howard D., O'boyle P., Kenny D., Buckley F., Horan B., Diskin M. 2011. Single nucleotide polymorphisms in the growth hormone and insulin-like growth factor-1 genes are associated with milk production, body condition score and fertility traits in dairy cows. Genet. Mol. Res., 10: 1819-1830. https://doi.org/10.4238/vol10-3gmr1173 es_ES
dc.description.references Ola S.I., Ai J.S., Liu J.H., Wang Q., Wang Z.B., Chen D.Y., Sun Q.Y. 2008. Effects of gonadotrophins, growth hormone, and activin A on enzymatically isolated follicle growth, oocyte chromatin organization, and steroid secretion. Mol. Reprod. Dev., 75: 89-96. https://doi.org/10.1002/mrd.20762 es_ES
dc.description.references Peakall P., Smouse R. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research -an update. Bioinformatics. 28: 2537-2539. https://doi.org/10.1093/bioinformatics/bts460 es_ES
dc.description.references Peiró R., Herrler A., Santacreu M., Merchán M., Argente M., García M., Folch J., Blasco A. 2010. Expression of progesterone receptor related to the polymorphism in the PGR gene in the rabbit reproductive tract. J. Anim. Sci., 88: 421-427. https://doi.org/10.2527/jas.2009-1955 es_ES
dc.description.references Peiró R., Merchan M., Santacreu M.A., Argente M.J., García M.L., Folch J.M., Blasco A. 2008. Identification of single-nucleotide polymorphism in the progesterone receptor gene and its association with reproductive traits in rabbits. Genetics. 180: 1699-1705. https://doi.org/10.1534/genetics.108.090779 es_ES
dc.description.references Rabie T. 2019. Genetic appraisal of red Baladi and Sinai Gabali rabbits sing microsatellite mrkers and DNA barcoding. EPSJ. 39: 235-251. https://doi.org/10.21608/epsj.2019.29818 es_ES
dc.description.references Reksen O., Gröhn Y., Havrevoll Ø., Bolstad T., Waldmann A., Ropstad E. 2002. Relationships among milk progesterone, concentrate allocation, energy balance, milk yield and conception rate in Norwegian cattle. Anim. Reprod. Sci., 73: 169-184. https://doi.org/10.1016/S0378-4320(02)00146-X es_ES
dc.description.references Renaville R., Hammadi M., Portetelle D. 2002. Role of the somatotropic axis in the mammalian metabolism. Domest. Anim. Endocrinol., 23: 351-360. https://doi.org/10.1016/S0739-7240(02)00170-4 es_ES
dc.description.references Russo V., Fontanesi L., Scotti E., Beretti F., Davoli R., Nanni Costa L., Virgili R., Buttazzoni L. 2008. Single nucleotide polymorphisms in several porcine cathepsin genes are associated with growth, carcass, and production traits in Italian Large White pigs. J. Anim. Sci., 86: 3300-3314. https://doi.org/10.2527/jas.2008-0920 es_ES
dc.description.references Silva J., Figueiredo J., Van den Hurk R. 2009. Involvement of growth hormone (GH) and insulin-like growth factor (IGF) system in ovarian folliculogenesis. Theriogenology. 71: 1193-1208. https://doi.org/10.1016/j.theriogenology.2008.12.015 es_ES
dc.description.references Sirotkin A., Mertin D., Süvegová K., Makarevich A., Mikulova E. 2003. Effect of GH and IGF-I treatment on reproduction, growth, and plasma hormone concentrations in domestic nutria (Myocastor coypus). Gen. Comp. Endocr., 131: 296-301. https://doi.org/10.1016/S0016-6480(03)00024-8 es_ES
dc.description.references Wang P., Lu L., Chu M., Zhang B., Fang L., Ma Y., Li K. 2009. Polymorphism of progesterone receptor gene and its relationship with litter size of Jining Grey goats. Scientia Agricultura Sinica. 42: 1768-1775. es_ES
dc.description.references Zhang C., Liu Y., Huang K., Zeng W., Xu D., Wen Q., Yang L. 2011. The association of two single nucleotide polymorphisms (SNPs) in growth hormone (GH) gene with litter size and superovulation response in goat-breeds. Genet. Mol. Biol., 34: 49-55. https://doi.org/10.1590/S1415-47572010005000110 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem