- -

Association of growth hormone (GH), insulin-like growth factor 2 (IGF2) and progesterone receptor (PGR) genes with some productive traits in Gabali rabbits

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Association of growth hormone (GH), insulin-like growth factor 2 (IGF2) and progesterone receptor (PGR) genes with some productive traits in Gabali rabbits

Mostrar el registro completo del ítem

Ramadan, S.; Manaa, E.; El-Attrony, M.; El Nagar, A. (2020). Association of growth hormone (GH), insulin-like growth factor 2 (IGF2) and progesterone receptor (PGR) genes with some productive traits in Gabali rabbits. World Rabbit Science. 28(3):135-144. https://doi.org/10.4995/wrs.2020.12610

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/151206

Ficheros en el ítem

Metadatos del ítem

Título: Association of growth hormone (GH), insulin-like growth factor 2 (IGF2) and progesterone receptor (PGR) genes with some productive traits in Gabali rabbits
Autor: Ramadan, S.I. Manaa, E.A. El-Attrony, M.E. EL Nagar, A.G.
Fecha difusión:
Resumen:
[EN] The objectives of the present study were 1) to evaluate the polymorphism of growth hormone(GH), insulin-like growth factor 2 (IGF2) and progesterone receptor (PGR) genes in Sinai Gabali rabbits, and 2) to assess their ...[+]
Palabras clave: Gene polymorphism , Growth , Litter size , Milk yield , PCR , RFLP , Rabbits
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
World Rabbit Science. (issn: 1257-5011 ) (eissn: 1989-8886 )
DOI: 10.4995/wrs.2020.12610
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/wrs.2020.12610
Agradecimientos:
This work was supported by the research project “Genetic improvement of local rabbit breeds using molecular genetic techniques” from the Scientific Research Fund (SRF), Benha University, Egypt. The English revision of the ...[+]
Tipo: Artículo

References

Abd El-Ghany S.M. 2015 Genetic studies on growth hormone as a physiological indicator in rabbits. M.Sc. Thesis, Faculty of Agriculture, Cairo University, Cairo, Egypt.

Abdel-Kafy E., Gafer J., Shaaban H. 2014. Impact of insulin-like growth factor-II polymorphisms on growth and reproductive traits in rabbits. Arab J. Biotechnol., 17: 121-132.

Abdel-Kafy E., Hussein B., Abdel-Ghany S., El-Din A., Badawi Y. 2015. Single nucleotide polymorphisms in growth hormone gene are associated with some performance traits in Rabbit. IJBPAS. 4: 490-504. [+]
Abd El-Ghany S.M. 2015 Genetic studies on growth hormone as a physiological indicator in rabbits. M.Sc. Thesis, Faculty of Agriculture, Cairo University, Cairo, Egypt.

Abdel-Kafy E., Gafer J., Shaaban H. 2014. Impact of insulin-like growth factor-II polymorphisms on growth and reproductive traits in rabbits. Arab J. Biotechnol., 17: 121-132.

Abdel-Kafy E., Hussein B., Abdel-Ghany S., El-Din A., Badawi Y. 2015. Single nucleotide polymorphisms in growth hormone gene are associated with some performance traits in Rabbit. IJBPAS. 4: 490-504.

Afifi E. 2002. The Gabali Rabbits (Egypt). In: Khalil M.H. (ed.), Baselga M. (ed.). Rabbit genetic resources in Mediterranean countries. Zaragoza: CIHEAM, (Options Méditerranéennes: Série B. Etudes et Recherches). 38: 55-64.

Amalianingsih T., Brahmantiyo B. 2014. The Variability of Growth Hormone Gene Associated with Ultrasound Imaging of Longissimus dorsi Muscle and Perirenal Fat in Rabbits. Media Peternakan. 37: 1-7. https://doi.org/10.5398/medpet.2014.37.1.1

Argente M., Merchán M., Peiró R., García M., Santacreu M., Folch J., Blasco A. 2010. Candidate gene analysis for reproductive traits in two lines of rabbits divergently selected for uterine capacity. J. Anim. Sci., 88: 828-836. https://doi.org/10.2527/jas.2009-2324

Badr O.A., EL-Shawaf I.S., Khalil M.H., Refaat M.H., El-Zarei M.F. 2016. Assessment of genetic variability among some rabbit breeds using RAPD-DNA technique. 2016. 3rd International Conference On Biotechnology Applications In Agriculture, Benha University, Moshtohor and Sharm El-Sheikh, 5-9, April, Egypt. pp 1-5.

Badr O., El-Shawaf I., Khalil M., Refaat M., Ramadan S. 2019. Molecular genetic diversity and conservation priorities of Egyptian rabbit breeds. World Rabbit Sci., 27: 135-141. https://doi.org/10.4995/wrs.2019.8923

Bagnicka E., Siadkowska E., Strzałkowska N., Żelazowska B., Flisikowski K., Krzyżewski J., Zwierzchowski L. 2010. Association of polymorphisms in exons 2 and 10 of the insulin-like growth factor 2 (IGF2) gene with milk production traits in Polish Holstein-Friesian cattle. J. Dairy Res., 77: 37-42. https://doi.org/10.1017/S0022029909990197

Buys N., Abeele G., Stinckens A., Deley J., Georges M. 2006 Effect of the IGF2-intron3-G3072A mutation on prolificacy in sows. In Proc.: 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, Minas Gerais, Brazil, 13-18 August, 2006. Instituto Prociência, pp. 06-22.

Cartuche L., Pascual M., Gómez E., Blasco A. 2014. Economic weights in rabbit meat production. World Rabbit Sci., 22: 165-177. https://doi.org/10.4995/wrs.2014.1747

Conneely O.M., Mulac-Jericevic B., Demayo F., Lydon J.P., O'Malley B.W. 2002. Reproductive functions of progesterone receptors. Recent. Prog. Horm. Res., 57: 339-356. https://doi.org/10.1210/rp.57.1.339

El-Aksher S.H., Sherif H., Khalil M., El-Garhy H.A., Ramadan S. 2017. Molecular analysis of a new synthetic rabbit line and their parental populations using microsatellite and SNP markers. Gene Rep., 8: 17-23. https://doi.org/10.1016/j.genrep.2017.05.001

Fontanesi L., Dall'Olio S., Spaccapaniccia E., Scotti E., Fornasini D., Frabetti A., Russo V. 2012a. A single nucleotide polymorphism in the rabbit growth hormone (GH1) gene is associated with market weight in a commercial rabbit population. Livest. Sci., 147: 84-88. https://doi.org/10.1016/j.livsci.2012.04.006

Fontanesi L., Mazzoni G., Bovo S., Frabetti A., Fornasini D., Dall'Olio S., Russo V. 2012b. Association between a polymorphism in the IGF 2 gene and finishing weight in a commercial rabbit population. Anim. Genet., 43: 651-652. https://doi.org/10.1111/j.1365-2052.2012.02318.x

Fontanesi L., Tazzoli M., Scotti E., Russo V. 2008 Analysis of candidate genes for meat production traits in domestic rabbit breeds. In Proc.: 9th World Rabbit Congress, 10-13 June 2008, Verona, Italy. pp. 79-84.

Fouzia K.B., Homrani A., Ammam A. 2017. Population structure and genetic diversity using microsatellite markers of four Algerian rabbit populations precludes hybridization with foreign breeds. SAJEB. 7: 191-200.

Gad S. 1998 Evaluation of growth and production performance of Al-Gabali rabbits and their crosses under semi-arid conditions. M. Sc. Thesis, Faculty of Agriculture, Moshtohor, Zagazig, University, Benha.

Galal O.A,, Rehan M., Abd El-Karim R.E. 2013. Analysis of genetic diversity within and among four rabbit genotypes using biochemical and molecular genetic markers. Afr. J. Biotechnol., 12: 2830-2839. https://www.ajol.info/index.php/ajb/article/view/131265

García M., Peiró R., Argente M., Merchán M., Folch J., Blasco A., Santacreu M. 2010. Investigation of the oviductal glycoprotein 1 (OVGP1) gene associated with embryo survival and development in the rabbit. J. Anim. Sci., 88: 1597-1602. https://doi.org/10.2527/jas.2009-2042

Hull K., Harvey S. 2002. GH as a co-gonadotropin: the relevance of correlative changes in GH secretion and reproductive state. J. Endocrinol., 172: 1-19. https://doi.org/10.1677/joe.0.1720001

Husvéth F. 2011. Physiological and reproductional aspects of animal production. Debrecen University, University of West Hungary, Pannon University. p3.

Iraqi M., García M., Khalil M., Baselga M. 2010a. Evaluation of milk yield and some related maternal traits in a crossbreeding project of Egyptian Gabali breed with Spanish V-line in rabbits. J. Anim. Breed. Genet., 127: 242-248. https://doi.org/10.1111/j.1439-0388.2009.00825.x

Iraqi M., Shenana M., Baselga M. 2010b. Some factors affecting production and milk composition characters in a crossbreeding experiment involving Gabali and V-line rabbits in Egypt. World Rabbit Sci., 15: 151-159. https://doi.org/10.4995/wrs.2007.594

Khalil M. 1999. Rabbit genetic resources of Egypt. Animal Genetic Resources (FAO). 26: 95-111. https://doi.org/10.1017/S101423390000122X

Khalil M., Afifi E. 2000 Heterosis, maternal and direct additive effects for litter performance and postweaning growth in Gabali rabbits and their F1 crosses with New Zealand White. In Proc.: 7th World Rabbit Congress, Valencia, Spain. pp. 4-7.

Khalil M., Baselga M., 2002 Rabbit genetic resources in Mediterranean countries. In Khalil M. H. and M. Baselga (eds), Options Méditerranéennes. CIHEAM-IAMZ, Zaragoza, Spain, pp. 262.

Lucy M. 2008. Functional differences in the growth hormone and insulin-like growth factor axis in cattle and pigs: implications for post-partum nutrition and reproduction. Reprod. Domest. Anim., 43: 31-39. https://doi.org/10.1111/j.1439-0531.2008.01140.x

McNitt J., Lukefahr S. 1990. Effects of breed, parity, day of lactation and number of kits on milk production of rabbits. J. Anim. Sci., 68: 1505-1512. https://doi.org/10.2527/1990.6861505x

Merchán M., Peiró R., Argente M., Santacreu M., García M., Blasco A., Folch J. 2009. Analysis of the oviductal glycoprotein 1 polymorphisms and their effects on components of litter size in rabbits. Anim. Genet., 40: 756-758. https://doi.org/10.1111/j.1365-2052.2009.01898.x

Misztal I., Tsuruta S., Strabel T., Auvray B., Druet T., Lee D., 2002 BLUPF90 and related programs (BGF90). In Proc.: 7th world congress on genetics applied to livestock production. pp. 743-744.

Mohamed E.A., Abdelfatah M.G. 2018. Genetic diversity assessment among six rabbit breeds using RAPD and SRAP markers. Egypt. J. Genet. Cytol., 47: 161-173. http://journal.esg.net.eg/index.php/EJGC/article/view/282

Mullen M., Lynch C., Waters S., Howard D., O'boyle P., Kenny D., Buckley F., Horan B., Diskin M. 2011. Single nucleotide polymorphisms in the growth hormone and insulin-like growth factor-1 genes are associated with milk production, body condition score and fertility traits in dairy cows. Genet. Mol. Res., 10: 1819-1830. https://doi.org/10.4238/vol10-3gmr1173

Ola S.I., Ai J.S., Liu J.H., Wang Q., Wang Z.B., Chen D.Y., Sun Q.Y. 2008. Effects of gonadotrophins, growth hormone, and activin A on enzymatically isolated follicle growth, oocyte chromatin organization, and steroid secretion. Mol. Reprod. Dev., 75: 89-96. https://doi.org/10.1002/mrd.20762

Peakall P., Smouse R. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research -an update. Bioinformatics. 28: 2537-2539. https://doi.org/10.1093/bioinformatics/bts460

Peiró R., Herrler A., Santacreu M., Merchán M., Argente M., García M., Folch J., Blasco A. 2010. Expression of progesterone receptor related to the polymorphism in the PGR gene in the rabbit reproductive tract. J. Anim. Sci., 88: 421-427. https://doi.org/10.2527/jas.2009-1955

Peiró R., Merchan M., Santacreu M.A., Argente M.J., García M.L., Folch J.M., Blasco A. 2008. Identification of single-nucleotide polymorphism in the progesterone receptor gene and its association with reproductive traits in rabbits. Genetics. 180: 1699-1705. https://doi.org/10.1534/genetics.108.090779

Rabie T. 2019. Genetic appraisal of red Baladi and Sinai Gabali rabbits sing microsatellite mrkers and DNA barcoding. EPSJ. 39: 235-251. https://doi.org/10.21608/epsj.2019.29818

Reksen O., Gröhn Y., Havrevoll Ø., Bolstad T., Waldmann A., Ropstad E. 2002. Relationships among milk progesterone, concentrate allocation, energy balance, milk yield and conception rate in Norwegian cattle. Anim. Reprod. Sci., 73: 169-184. https://doi.org/10.1016/S0378-4320(02)00146-X

Renaville R., Hammadi M., Portetelle D. 2002. Role of the somatotropic axis in the mammalian metabolism. Domest. Anim. Endocrinol., 23: 351-360. https://doi.org/10.1016/S0739-7240(02)00170-4

Russo V., Fontanesi L., Scotti E., Beretti F., Davoli R., Nanni Costa L., Virgili R., Buttazzoni L. 2008. Single nucleotide polymorphisms in several porcine cathepsin genes are associated with growth, carcass, and production traits in Italian Large White pigs. J. Anim. Sci., 86: 3300-3314. https://doi.org/10.2527/jas.2008-0920

Silva J., Figueiredo J., Van den Hurk R. 2009. Involvement of growth hormone (GH) and insulin-like growth factor (IGF) system in ovarian folliculogenesis. Theriogenology. 71: 1193-1208. https://doi.org/10.1016/j.theriogenology.2008.12.015

Sirotkin A., Mertin D., Süvegová K., Makarevich A., Mikulova E. 2003. Effect of GH and IGF-I treatment on reproduction, growth, and plasma hormone concentrations in domestic nutria (Myocastor coypus). Gen. Comp. Endocr., 131: 296-301. https://doi.org/10.1016/S0016-6480(03)00024-8

Wang P., Lu L., Chu M., Zhang B., Fang L., Ma Y., Li K. 2009. Polymorphism of progesterone receptor gene and its relationship with litter size of Jining Grey goats. Scientia Agricultura Sinica. 42: 1768-1775.

Zhang C., Liu Y., Huang K., Zeng W., Xu D., Wen Q., Yang L. 2011. The association of two single nucleotide polymorphisms (SNPs) in growth hormone (GH) gene with litter size and superovulation response in goat-breeds. Genet. Mol. Biol., 34: 49-55. https://doi.org/10.1590/S1415-47572010005000110

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem