- -

Development of lower-limb rehabilitation exercises using 3-PRS Parallel Robot and Dynamic Movement Primitives

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Development of lower-limb rehabilitation exercises using 3-PRS Parallel Robot and Dynamic Movement Primitives

Mostrar el registro completo del ítem

Escarabajal Sánchez, RJ.; Abu Dakka, FJM.; Pulloquinga Zapata, J.; Mata Amela, V.; Vallés Miquel, M.; Valera Fernández, Á. (2020). Development of lower-limb rehabilitation exercises using 3-PRS Parallel Robot and Dynamic Movement Primitives. Multidisciplinary Journal for Education, Social and Technological Sciences. 7(2):30-44. https://doi.org/10.4995/muse.2020.13907

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/152316

Ficheros en el ítem

Metadatos del ítem

Título: Development of lower-limb rehabilitation exercises using 3-PRS Parallel Robot and Dynamic Movement Primitives
Autor: Escarabajal Sánchez, Rafael José Abu Dakka, Fares Jawad Mohd Pulloquinga Zapata, José Mata Amela, Vicente Vallés Miquel, Marina Valera Fernández, Ángel
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Automática e Informática Industrial - Institut Universitari d'Automàtica i Informàtica Industrial
Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica
Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica
Fecha difusión:
Resumen:
[EN] The design of rehabilitation exercises applied to sprained ankles requires extreme caution, regarding the trajectories and the speed of the movements that will affect the patient. This paper presents a technique that ...[+]
Palabras clave: Parallel robot , Rehabilitation robot , Dynamic Movement Primitives , Position control
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Multidisciplinary Journal for Education, Social and Technological Sciences. (eissn: 2341-2593 )
DOI: 10.4995/muse.2020.13907
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/muse.2020.13907
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-84201-R/ES/INTEGRACION DE MODELOS BIOMECANICOS EN EL DESARROLLO Y OPERACION DE ROBOTS REHABILITADORES RECONFIGURABLES/
Agradecimientos:
This work has been partially funded by FEDER-CICYT project with reference DPI2017-84201-R financed by Ministerio de Economía, Industria e Innovación (Spain).
Tipo: Artículo

References

Abu-Dakka, F. J., Valera, A., Escalera, J. A., Vallés, M., Mata, V., & Abderrahim, M. (2015). Trajectory adaptation and learning for ankle rehabilitation using a 3-PRS parallel robot. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9245, 483-494. https://doi.org/10.1007/978-3-319-22876-1_41

Atkeson, C. G., Moore, A. W., & Schaal, S. (1997). Locally Weighted Learning. Artificial Intelligence Review, 11(1-5), 11-73. https://doi.org/10.1007/978-94-017-2053-3_2

Brockett, C. L., & Chapman, G. J. (2016). Biomechanics of the ankle. Orthopaedics and Trauma, 30(3), 232-238. https://doi.org/10.1016/j.mporth.2016.04.015 [+]
Abu-Dakka, F. J., Valera, A., Escalera, J. A., Vallés, M., Mata, V., & Abderrahim, M. (2015). Trajectory adaptation and learning for ankle rehabilitation using a 3-PRS parallel robot. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9245, 483-494. https://doi.org/10.1007/978-3-319-22876-1_41

Atkeson, C. G., Moore, A. W., & Schaal, S. (1997). Locally Weighted Learning. Artificial Intelligence Review, 11(1-5), 11-73. https://doi.org/10.1007/978-94-017-2053-3_2

Brockett, C. L., & Chapman, G. J. (2016). Biomechanics of the ankle. Orthopaedics and Trauma, 30(3), 232-238. https://doi.org/10.1016/j.mporth.2016.04.015

Dai, J. S., Zhao, T., & Nester, C. (2004). Sprained Ankle Physiotherapy Based Mechanism Synthesis and Stiffness Analysis of a Robotic Rehabilitation Device. Autonomous Robots, 16(2), 207-218. https://doi.org/10.1023/B:AURO.0000016866.80026.d7

Díaz-Rodríguez, M., Mata, V., Valera, Á., & Page, Á. (2010). A methodology for dynamic parameters identification of 3-DOF parallel robots in terms of relevant parameters. Mechanism and Machine Theory, 45(9), 1337-1356. https://doi.org/10.1016/j.mechmachtheory.2010.04.007

Díaz, I., Gil, J. J., & Sánchez, E. (2011). Lower-Limb Robotic Rehabilitation: Literature Review and Challenges. Journal of Robotics, 2011(i), 1-11. https://doi.org/10.1155/2011/759764

Fanger, Y., Umlauft, J., & Hirche, S. (2016). Gaussian Processes for Dynamic Movement Primitives with application in knowledge-based cooperation. IEEE International Conference on Intelligent Robots and Systems, 2016-Novem, 3913-3919. https://doi.org/10.1109/IROS.2016.7759576

Gosselin, C., & Angeles, J. (1990). Singularity Analysis of Closed-Loop Kinematic Chains. IEEE Transactions on Robotics and Automation, 6(3), 281-290. https://doi.org/10.1109/70.56660

Hesse, S., & Uhlenbrock, D. (2000). A mechanized gait trainer for restoration of gait. Journal of Rehabilitation Research and Development, 37(6), 701-708.

Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., & Schaal, S. (2013). Dynamical movement primitives: Learning attractor models formotor behaviors. Neural Computation, 25(2), 328-373. https://doi.org/10.1162/NECO_a_00393

Ijspeert, A. J., Nakanishi, J., & Schaal, S. (2002). Movement imitation with nonlinear dynamical systems in humanoid robots. Proceedings - IEEE International Conference on Robotics and Automation, 2, 1398-1403. https://doi.org/10.1109/ROBOT.2002.1014739

Liu, G., Gao, J., Yue, H., Zhang, X., & Lu, G. (2006). Design and kinematics simulation of parallel robots for ankle rehabilitation. 2006 IEEE International Conference on Mechatronics and Automation, ICMA 2006, 2006, 1109-1113. https://doi.org/10.1109/ICMA.2006.257780

Nakanishi, J., Morimoto, J., Endo, G., Cheng, G., Schaal, S., & Kawato, M. (2004). Learning from demonstration and adaptation of biped locomotion. Robotics and Autonomous Systems, 47(2-3), 79-91. https://doi.org/10.1016/j.robot.2004.03.003

Nemec, B., & Ude, A. (2012). Action sequencing using dynamic movement primitives. Robotica, 30(5), 837-846. https://doi.org/10.1017/S0263574711001056

Patel, Y. D., & George, P. M. (2012). Parallel Manipulators Applications-A Survey. Modern Mechanical Engineering, 02(03), 57-64. https://doi.org/10.4236/mme.2012.23008

Paul, R. P. (1981). Robot Manipulators: Mathematics, Programming, and Control : the Computer Control of Robot Manipulators (p. 279).

Reinkensmeyer, D. J., Aoyagi, D., Emken, J. L., Galvez, J. A., Ichinose, W., Kerdanyan, G., Maneekobkunwong, S., Minakata, K., Nessler, J. A., Weber, R., Roy, R. R., De Leon, R., Bobrow, J. E., Harkema, S. J., & Reggie Edgerton, V. (2006). Tools for understanding and optimizing robotic gait training. Journal of Rehabilitation Research and Development, 43(5), 657-670. https://doi.org/10.1682/JRRD.2005.04.0073

Safran, M. R., Benedetti, R. S., Bartolozzi, A. R., & Mandelbaum, B. R. (1999). Lateral ankle sprains: A comprehensive review part 1: Etiology, pathoanatomy, histopathogenesis, and diagnosis. In Medicine and Science in Sports and Exercise (Vol. 31, Issue 7 SUPPL., pp. S429-S437).

https://doi.org/10.1097/00005768-199907001-00004

Saglia, J. A., Tsagarakis, N. G., Dai, J. S., & Caldwell, D. G. (2013). Control strategies for patient-assisted training using the ankle rehabilitation robot (ARBOT). IEEE/ASME Transactions on Mechatronics, 18(6), 1799-1808. https://doi.org/10.1109/TMECH.2012.2214228

Schaal, S. (2006). Dynamic Movement Primitives -A Framework for Motor Control in Humans and Humanoid Robotics. In Adaptive Motion of Animals and Machines (pp. 261-280). https://doi.org/10.1007/4-431-31381-8_23

Sui, P., Yao, L., Lin, Z., Yan, H., & Dai, J. S. (2009). Analysis and synthesis of ankle motion and rehabilitation robots. 2009 IEEE International Conference on Robotics and Biomimetics, ROBIO 2009, 3, 2533-2538. https://doi.org/10.1109/ROBIO.2009.5420487

Tsoi, Y. H., Xie, S. Q., & Graham, A. E. (2009). Design, modeling and control of an ankle rehabilitation robot. Studies in Computational Intelligence, 177, 377-399. https://doi.org/10.1007/978-3-540-89933-4_18

Vallés, M., Díaz-Rodrguez, M., Valera, Á., Mata, V., & Page, Á. (2012). Mechatronic development and dynamic control of a 3-dof parallel manipulator. Mechanics Based Design of Structures and Machines, 40(4), 434-452. https://doi.org/10.1080/15397734.2012.687292

Xie, S. (2016). Advanced robotics for medical rehabilitation: current state of the art and recent advances. In Springer tracts in advanced robotics (Issue 108). https://doi.org/10.1007/978-3-319-19896-5

Yoon, J., Ryu, J., & Lim, K. B. (2006). Reconfigurable ankle rehabilitation robot for various exercises. Journal of Robotic Systems, 22(SUPPL.), 15-33. https://doi.org/10.1002/rob.20150

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem