- -

Role of the central cations in the mechanical unfolding of DNA and RNA G-quadruplexes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Role of the central cations in the mechanical unfolding of DNA and RNA G-quadruplexes

Mostrar el registro completo del ítem

Bergues-Pupo, A.; Arias-Gonzalez, JR.; Moron, M.; Fiasconaro, A.; Falo, F. (2015). Role of the central cations in the mechanical unfolding of DNA and RNA G-quadruplexes. Nucleic Acids Research. 43(15):7638-7647. https://doi.org/10.1093/nar/gkv690

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/152797

Ficheros en el ítem

Metadatos del ítem

Título: Role of the central cations in the mechanical unfolding of DNA and RNA G-quadruplexes
Autor: Bergues-Pupo, A.E. Arias-Gonzalez, J. R. Moron, M.C. Fiasconaro, A. Falo, F.
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] Cations are known to mediate diverse interactions in nucleic acids duplexes but they are critical in the arrangement of four-stranded structures. Here, we use all- atom molecular dynamics simulations with explicit ...[+]
Palabras clave: G-quadruplex , DNA , RNA , Cation , Stability , Molecular dynamics
Derechos de uso: Reconocimiento (by)
Fuente:
Nucleic Acids Research. (issn: 0305-1048 )
DOI: 10.1093/nar/gkv690
Editorial:
Oxford University Press
Versión del editor: https://doi.org/10.1093/nar/gkv690
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MAT2013-49455-EXP/ES/G-CUADRUPLEX COMO INTERRUPTOR MOLECULAR CONTROLADO POR NANOPARTICULAS Y DEMOSTRADO POR PINZAS OPTICAS/
info:eu-repo/grantAgreement/UKRI//EP%2FK020633%2F1/GB/GALE - Global Accessibility to Local Experience/
info:eu-repo/grantAgreement/MICINN//FIS2011-25167/ES/REDES, BIOFISICA Y CIENCIA NO LINEAL/
info:eu-repo/grantAgreement/MINECO//FIS2014-55867-P/ES/SOCIOBIOTEC: FISICA ESTADISITCA Y NO LINEAL APLICADA A SISTEMAS SOCIALES, BIOLOGICOS Y TECNOLOGICOS/
info:eu-repo/grantAgreement/Gobierno de Aragón//E19/ES/Fisica Estadistica y No Lineal (GEFENOL)/
Agradecimientos:
This work was supported by the Spanish DGICYT Projects No. FIS2011-25167 and FIS2014-55867-P, co-financed by FEDER funds, and by the Gobierno de Aragon through the grant E19 to the FENOL group. Work by J.R. A-G. is supported ...[+]
Tipo: Artículo

References

Burge, S., Parkinson, G. N., Hazel, P., Todd, A. K., & Neidle, S. (2006). Quadruplex DNA: sequence, topology and structure. Nucleic Acids Research, 34(19), 5402-5415. doi:10.1093/nar/gkl655

Collie, G. W., & Parkinson, G. N. (2011). The application of DNA and RNA G-quadruplexes to therapeutic medicines. Chemical Society Reviews, 40(12), 5867. doi:10.1039/c1cs15067g

Lim, K. W., Ng, V. C. M., Martín-Pintado, N., Heddi, B., & Phan, A. T. (2013). Structure of the human telomere in Na+ solution: an antiparallel (2+2) G-quadruplex scaffold reveals additional diversity. Nucleic Acids Research, 41(22), 10556-10562. doi:10.1093/nar/gkt771 [+]
Burge, S., Parkinson, G. N., Hazel, P., Todd, A. K., & Neidle, S. (2006). Quadruplex DNA: sequence, topology and structure. Nucleic Acids Research, 34(19), 5402-5415. doi:10.1093/nar/gkl655

Collie, G. W., & Parkinson, G. N. (2011). The application of DNA and RNA G-quadruplexes to therapeutic medicines. Chemical Society Reviews, 40(12), 5867. doi:10.1039/c1cs15067g

Lim, K. W., Ng, V. C. M., Martín-Pintado, N., Heddi, B., & Phan, A. T. (2013). Structure of the human telomere in Na+ solution: an antiparallel (2+2) G-quadruplex scaffold reveals additional diversity. Nucleic Acids Research, 41(22), 10556-10562. doi:10.1093/nar/gkt771

Lam, E. Y. N., Beraldi, D., Tannahill, D., & Balasubramanian, S. (2013). G-quadruplex structures are stable and detectable in human genomic DNA. Nature Communications, 4(1). doi:10.1038/ncomms2792

Siddiqui-Jain, A., Grand, C. L., Bearss, D. J., & Hurley, L. H. (2002). Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proceedings of the National Academy of Sciences, 99(18), 11593-11598. doi:10.1073/pnas.182256799

Azzalin, C. M., Reichenbach, P., Khoriauli, L., Giulotto, E., & Lingner, J. (2007). Telomeric Repeat Containing RNA and RNA Surveillance Factors at Mammalian Chromosome Ends. Science, 318(5851), 798-801. doi:10.1126/science.1147182

Wieland, M., & Hartig, J. S. (2007). RNA Quadruplex-Based Modulation of Gene Expression. Chemistry & Biology, 14(7), 757-763. doi:10.1016/j.chembiol.2007.06.005

Schoeftner, S., & Blasco, M. A. (2007). Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nature Cell Biology, 10(2), 228-236. doi:10.1038/ncb1685

Sun, D., Thompson, B., Cathers, B. E., Salazar, M., Kerwin, S. M., Trent, J. O., … Hurley, L. H. (1997). Inhibition of Human Telomerase by a G-Quadruplex-Interactive Compound. Journal of Medicinal Chemistry, 40(14), 2113-2116. doi:10.1021/jm970199z

Mergny, J.-L., & Hélène, C. (1998). G-quadruplex DNA: A target for drug design. Nature Medicine, 4(12), 1366-1367. doi:10.1038/3949

Horard, B., & Gilson, E. (2008). Telomeric RNA enters the game. Nature Cell Biology, 10(2), 113-115. doi:10.1038/ncb0208-113

Parkinson, G. N., Lee, M. P. H., & Neidle, S. (2002). Crystal structure of parallel quadruplexes from human telomeric DNA. Nature, 417(6891), 876-880. doi:10.1038/nature755

Wang, Y., & Patel, D. J. (1993). Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure, 1(4), 263-282. doi:10.1016/0969-2126(93)90015-9

Phan, A. T., Kuryavyi, V., Luu, K. N., & Patel, D. J. (2007). Structure of two intramolecular G-quadruplexes formed by natural human telomere sequences in K + solution †. Nucleic Acids Research, 35(19), 6517-6525. doi:10.1093/nar/gkm706

Dai, J., Carver, M., Punchihewa, C., Jones, R. A., & Yang, D. (2007). Structure of the Hybrid-2 type intramolecular human telomeric G-quadruplex in K+ solution: insights into structure polymorphism of the human telomeric sequence. Nucleic Acids Research, 35(15), 4927-4940. doi:10.1093/nar/gkm522

Dai, J., Carver, M., & Yang, D. (2008). Polymorphism of human telomeric quadruplex structures. Biochimie, 90(8), 1172-1183. doi:10.1016/j.biochi.2008.02.026

Dai, J., Punchihewa, C., Ambrus, A., Chen, D., Jones, R. A., & Yang, D. (2007). Structure of the intramolecular human telomeric G-quadruplex in potassium solution: a novel adenine triple formation. Nucleic Acids Research, 35(7), 2440-2450. doi:10.1093/nar/gkm009

Martadinata, H., & Phan, A. T. (2009). Structure of Propeller-Type Parallel-Stranded RNA G-Quadruplexes, Formed by Human Telomeric RNA Sequences in K+Solution. Journal of the American Chemical Society, 131(7), 2570-2578. doi:10.1021/ja806592z

Collie, G. W., Haider, S. M., Neidle, S., & Parkinson, G. N. (2010). A crystallographic and modelling study of a human telomeric RNA (TERRA) quadruplex. Nucleic Acids Research, 38(16), 5569-5580. doi:10.1093/nar/gkq259

Garavís, M., Bocanegra, R., Herrero-Galán, E., González, C., Villasante, A., & Arias-Gonzalez, J. R. (2013). Mechanical unfolding of long human telomeric RNA (TERRA). Chemical Communications, 49(57), 6397. doi:10.1039/c3cc42981d

Koirala, D., Dhakal, S., Ashbridge, B., Sannohe, Y., Rodriguez, R., Sugiyama, H., … Mao, H. (2011). A single-molecule platform for investigation of interactions between G-quadruplexes and small-molecule ligands. Nature Chemistry, 3(10), 782-787. doi:10.1038/nchem.1126

Yu, Z., Schonhoft, J. D., Dhakal, S., Bajracharya, R., Hegde, R., Basu, S., & Mao, H. (2009). ILPR G-Quadruplexes Formed in Seconds Demonstrate High Mechanical Stabilities. Journal of the American Chemical Society, 131(5), 1876-1882. doi:10.1021/ja806782s

De Messieres, M., Chang, J.-C., Brawn-Cinani, B., & La Porta, A. (2012). Single-Molecule Study ofG-Quadruplex Disruption Using Dynamic Force Spectroscopy. Physical Review Letters, 109(5). doi:10.1103/physrevlett.109.058101

Dhakal, S., Cui, Y., Koirala, D., Ghimire, C., Kushwaha, S., Yu, Z., … Mao, H. (2013). Structural and mechanical properties of individual human telomeric G-quadruplexes in molecularly crowded solutions. Nucleic Acids Research, 41(6), 3915-3923. doi:10.1093/nar/gkt038

Yangyuoru, P. M., Zhang, A. Y. Q., Shi, Z., Koirala, D., Balasubramanian, S., & Mao, H. (2013). Mechanochemical Properties of Individual Human Telomeric RNA (TERRA) G-Quadruplexes. ChemBioChem, 14(15), 1931-1935. doi:10.1002/cbic.201300350

Arias-Gonzalez, J. R. (2014). Single-molecule portrait of DNA and RNA double helices. Integr. Biol., 6(10), 904-925. doi:10.1039/c4ib00163j

Lane, A. N. (2012). The stability of intramolecular DNA G-quadruplexes compared with other macromolecules. Biochimie, 94(2), 277-286. doi:10.1016/j.biochi.2011.08.004

Gray, R. D., Trent, J. O., & Chaires, J. B. (2014). Folding and Unfolding Pathways of the Human Telomeric G-Quadruplex. Journal of Molecular Biology, 426(8), 1629-1650. doi:10.1016/j.jmb.2014.01.009

Mashimo, T., Yagi, H., Sannohe, Y., Rajendran, A., & Sugiyama, H. (2010). Folding Pathways of Human Telomeric Type-1 and Type-2 G-Quadruplex Structures. Journal of the American Chemical Society, 132(42), 14910-14918. doi:10.1021/ja105806u

Bian, Y., Tan, C., Wang, J., Sheng, Y., Zhang, J., & Wang, W. (2014). Atomistic Picture for the Folding Pathway of a Hybrid-1 Type Human Telomeric DNA G-quadruplex. PLoS Computational Biology, 10(4), e1003562. doi:10.1371/journal.pcbi.1003562

Špačková, N., Berger, I., & Šponer, J. (1999). Nanosecond Molecular Dynamics Simulations of Parallel and Antiparallel Guanine Quadruplex DNA Molecules. Journal of the American Chemical Society, 121(23), 5519-5534. doi:10.1021/ja984449s

Li, M.-H., Luo, Q., Xue, X.-G., & Li, Z.-S. (2010). Toward a full structural characterization of G-quadruplex DNA in aqueous solution: Molecular dynamics simulations of four G-quadruplex molecules. Journal of Molecular Structure: THEOCHEM, 952(1-3), 96-102. doi:10.1016/j.theochem.2010.04.035

Islam, B., Sgobba, M., Laughton, C., Orozco, M., Sponer, J., Neidle, S., & Haider, S. (2013). Conformational dynamics of the human propeller telomeric DNA quadruplex on a microsecond time scale. Nucleic Acids Research, 41(4), 2723-2735. doi:10.1093/nar/gks1331

Heddi, B., & Phan, A. T. (2011). Structure of Human Telomeric DNA in Crowded Solution. Journal of the American Chemical Society, 133(25), 9824-9833. doi:10.1021/ja200786q

Martadinata, H., Heddi, B., Lim, K. W., & Phan, A. T. (2011). Structure of Long Human Telomeric RNA (TERRA): G-Quadruplexes Formed by Four and Eight UUAGGG Repeats Are Stable Building Blocks. Biochemistry, 50(29), 6455-6461. doi:10.1021/bi200569f

Chowdhury, S., & Bansal, M. (2001). G-Quadruplex Structure Can Be Stable with Only Some Coordination Sites Being Occupied by Cations:  A Six-Nanosecond Molecular Dynamics Study. The Journal of Physical Chemistry B, 105(31), 7572-7578. doi:10.1021/jp010929l

Špačková, N., Berger, I., & Šponer, J. (2001). Structural Dynamics and Cation Interactions of DNA Quadruplex Molecules Containing Mixed Guanine/Cytosine Quartets Revealed by Large-Scale MD Simulations. Journal of the American Chemical Society, 123(14), 3295-3307. doi:10.1021/ja002656y

Cavallari, M., Calzolari, A., Garbesi, A., & Di Felice, R. (2006). Stability and Migration of Metal Ions in G4-Wires by Molecular Dynamics Simulations. The Journal of Physical Chemistry B, 110(51), 26337-26348. doi:10.1021/jp064522y

Stadlbauer, P., Krepl, M., Cheatham, T. E., Koca, J., & Sponer, J. (2013). Structural dynamics of possible late-stage intermediates in folding of quadruplex DNA studied by molecular simulations. Nucleic Acids Research, 41(14), 7128-7143. doi:10.1093/nar/gkt412

Kirkwood, J. G. (1935). Statistical Mechanics of Fluid Mixtures. The Journal of Chemical Physics, 3(5), 300-313. doi:10.1063/1.1749657

Hsin, J., Strümpfer, J., Lee, E. H., & Schulten, K. (2011). Molecular Origin of the Hierarchical Elasticity of Titin: Simulation, Experiment, and Theory. Annual Review of Biophysics, 40(1), 187-203. doi:10.1146/annurev-biophys-072110-125325

Li, H., Cao, E., & Gisler, T. (2009). Force-induced unfolding of human telomeric G-quadruplex: A steered molecular dynamics simulation study. Biochemical and Biophysical Research Communications, 379(1), 70-75. doi:10.1016/j.bbrc.2008.12.006

Yang, C., Jang, S., & Pak, Y. (2011). Multiple stepwise pattern for potential of mean force in unfolding the thrombin binding aptamer in complex with Sr2+. The Journal of Chemical Physics, 135(22), 225104. doi:10.1063/1.3669424

Jarzynski, C. (1997). Nonequilibrium Equality for Free Energy Differences. Physical Review Letters, 78(14), 2690-2693. doi:10.1103/physrevlett.78.2690

Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33-38. doi:10.1016/0263-7855(96)00018-5

Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. Journal of Chemical Theory and Computation, 4(3), 435-447. doi:10.1021/ct700301q

Torrie, G. M., & Valleau, J. P. (1977). Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. Journal of Computational Physics, 23(2), 187-199. doi:10.1016/0021-9991(77)90121-8

Kumar, S., Rosenberg, J. M., Bouzida, D., Swendsen, R. H., & Kollman, P. A. (1992). THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. Journal of Computational Chemistry, 13(8), 1011-1021. doi:10.1002/jcc.540130812

Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101. doi:10.1063/1.2408420

Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182-7190. doi:10.1063/1.328693

Hub, J. S., de Groot, B. L., & van der Spoel, D. (2010). g_wham—A Free Weighted Histogram Analysis Implementation Including Robust Error and Autocorrelation Estimates. Journal of Chemical Theory and Computation, 6(12), 3713-3720. doi:10.1021/ct100494z

Li, W., Hou, X.-M., Wang, P.-Y., Xi, X.-G., & Li, M. (2013). Direct Measurement of Sequential Folding Pathway and Energy Landscape of Human Telomeric G-quadruplex Structures. Journal of the American Chemical Society, 135(17), 6423-6426. doi:10.1021/ja4019176

Yurenko, Y. P., Novotný, J., Sklenář, V., & Marek, R. (2014). Exploring non-covalent interactions in guanine- and xanthine-based model DNA quadruplex structures: a comprehensive quantum chemical approach. Phys. Chem. Chem. Phys., 16(5), 2072-2084. doi:10.1039/c3cp53875c

Ghimire, C., Park, S., Iida, K., Yangyuoru, P., Otomo, H., Yu, Z., … Mao, H. (2014). Direct Quantification of Loop Interaction and π–π Stacking for G-Quadruplex Stability at the Submolecular Level. Journal of the American Chemical Society, 136(44), 15537-15544. doi:10.1021/ja503585h

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem