Steitz, T. A., & Steitz, J. A. (1993). A general two-metal-ion mechanism for catalytic RNA. Proceedings of the National Academy of Sciences, 90(14), 6498-6502. doi:10.1073/pnas.90.14.6498
Nakamura, T., Zhao, Y., Yamagata, Y., Hua, Y., & Yang, W. (2012). Watching DNA polymerase η make a phosphodiester bond. Nature, 487(7406), 196-201. doi:10.1038/nature11181
Kohlstaedt, L., Wang, J., Friedman, J., Rice, P., & Steitz, T. (1992). Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science, 256(5065), 1783-1790. doi:10.1126/science.1377403
[+]
Steitz, T. A., & Steitz, J. A. (1993). A general two-metal-ion mechanism for catalytic RNA. Proceedings of the National Academy of Sciences, 90(14), 6498-6502. doi:10.1073/pnas.90.14.6498
Nakamura, T., Zhao, Y., Yamagata, Y., Hua, Y., & Yang, W. (2012). Watching DNA polymerase η make a phosphodiester bond. Nature, 487(7406), 196-201. doi:10.1038/nature11181
Kohlstaedt, L., Wang, J., Friedman, J., Rice, P., & Steitz, T. (1992). Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science, 256(5065), 1783-1790. doi:10.1126/science.1377403
Steitz, T. A. (2006). Visualizing polynucleotide polymerase machines at work. The EMBO Journal, 25(15), 3458-3468. doi:10.1038/sj.emboj.7601211
Zhang, H., Cao, W., Zakharova, E., Konigsberg, W., & De La Cruz, E. M. (2007). Fluorescence of 2-aminopurine reveals rapid conformational changes in the RB69 DNA polymerase-primer/template complexes upon binding and incorporation of matched deoxynucleoside triphosphates. Nucleic Acids Research, 35(18), 6052-6062. doi:10.1093/nar/gkm587
Wang, W., Wu, E. Y., Hellinga, H. W., & Beese, L. S. (2012). Structural Factors That Determine Selectivity of a High Fidelity DNA Polymerase for Deoxy-, Dideoxy-, and Ribonucleotides. Journal of Biological Chemistry, 287(34), 28215-28226. doi:10.1074/jbc.m112.366609
Berezhna, S. Y., Gill, J. P., Lamichhane, R., & Millar, D. P. (2012). Single-Molecule Förster Resonance Energy Transfer Reveals an Innate Fidelity Checkpoint in DNA Polymerase I. Journal of the American Chemical Society, 134(27), 11261-11268. doi:10.1021/ja3038273
Hariharan, C., Bloom, L. B., Helquist, S. A., Kool, E. T., & Reha-Krantz, L. J. (2006). Dynamics of Nucleotide Incorporation: Snapshots Revealed by 2-Aminopurine Fluorescence Studies†. Biochemistry, 45(9), 2836-2844. doi:10.1021/bi051644s
Joyce, C. M., Potapova, O., DeLucia, A. M., Huang, X., Basu, V. P., & Grindley, N. D. F. (2008). Fingers-Closing and Other Rapid Conformational Changes in DNA Polymerase I (Klenow Fragment) and Their Role in Nucleotide Selectivity†. Biochemistry, 47(23), 6103-6116. doi:10.1021/bi7021848
Vande Berg, B. J., Beard, W. A., & Wilson, S. H. (2000). DNA Structure and Aspartate 276 Influence Nucleotide Binding to Human DNA Polymerase β. Journal of Biological Chemistry, 276(5), 3408-3416. doi:10.1074/jbc.m002884200
Showalter, A. K., & Tsai, M.-D. (2002). A Reexamination of the Nucleotide Incorporation Fidelity of DNA Polymerases†. Biochemistry, 41(34), 10571-10576. doi:10.1021/bi026021i
Shah, A. M., Li, S.-X., Anderson, K. S., & Sweasy, J. B. (2001). Y265H Mutator Mutant of DNA Polymerase β. Journal of Biological Chemistry, 276(14), 10824-10831. doi:10.1074/jbc.m008680200
Rothwell, P. J., Mitaksov, V., & Waksman, G. (2005). Motions of the Fingers Subdomain of Klentaq1 Are Fast and Not Rate Limiting: Implications for the Molecular Basis of Fidelity in DNA Polymerases. Molecular Cell, 19(3), 345-355. doi:10.1016/j.molcel.2005.06.032
Patel, S. S., Wong, I., & Johnson, K. A. (1991). Pre-steady-state kinetic analysis of processive DNA replication including complete characterization of an exonuclease-deficient mutant. Biochemistry, 30(2), 511-525. doi:10.1021/bi00216a029
Luo, G., Wang, M., Konigsberg, W. H., & Xie, X. S. (2007). Single-molecule and ensemble fluorescence assays for a functionally important conformational change in T7 DNA polymerase. Proceedings of the National Academy of Sciences, 104(31), 12610-12615. doi:10.1073/pnas.0700920104
Joyce, C. M., & Benkovic, S. J. (2004). DNA Polymerase Fidelity: Kinetics, Structure, and Checkpoints†. Biochemistry, 43(45), 14317-14324. doi:10.1021/bi048422z
Fiala, K. A., & Suo, Z. (2004). Mechanism of DNA Polymerization Catalyzed bySulfolobus solfataricusP2 DNA Polymerase IV†. Biochemistry, 43(7), 2116-2125. doi:10.1021/bi035746z
Cramer, J., & Restle, T. (2005). Pre-steady-state Kinetic Characterization of the DinB Homologue DNA Polymerase ofSulfolobus solfataricus. Journal of Biological Chemistry, 280(49), 40552-40558. doi:10.1074/jbc.m504481200
Choi, J.-Y., & Guengerich, F. P. (2005). Adduct Size Limits Efficient and Error-free Bypass Across Bulky N2-Guanine DNA Lesions by Human DNA Polymerase η. Journal of Molecular Biology, 352(1), 72-90. doi:10.1016/j.jmb.2005.06.079
Olsen, T. J., Choi, Y., Sims, P. C., Gul, O. T., Corso, B. L., Dong, C., … Weiss, G. A. (2013). Electronic Measurements of Single-Molecule Processing by DNA Polymerase I (Klenow Fragment). Journal of the American Chemical Society, 135(21), 7855-7860. doi:10.1021/ja311603r
Allen, W. J., Rothwell, P. J., & Waksman, G. (2008). An intramolecular FRET system monitors fingers subdomain opening in Klentaq1. Protein Science, 17(3), 401-408. doi:10.1110/ps.073309208
Johnson, S. J., & Beese, L. S. (2004). Structures of Mismatch Replication Errors Observed in a DNA Polymerase. Cell, 116(6), 803-816. doi:10.1016/s0092-8674(04)00252-1
Yin, Y. W., & Steitz, T. A. (2004). The Structural Mechanism of Translocation and Helicase Activity in T7 RNA Polymerase. Cell, 116(3), 393-404. doi:10.1016/s0092-8674(04)00120-5
Golosov, A. A., Warren, J. J., Beese, L. S., & Karplus, M. (2010). The Mechanism of the Translocation Step in DNA Replication by DNA Polymerase I: A Computer Simulation Analysis. Structure, 18(1), 83-93. doi:10.1016/j.str.2009.10.014
Zhang, C., & Burton, Z. F. (2004). Transcription Factors IIF and IIS and Nucleoside Triphosphate Substrates as Dynamic Probes of the Human RNA Polymerase II Mechanism. Journal of Molecular Biology, 342(4), 1085-1099. doi:10.1016/j.jmb.2004.07.070
Nedialkov, Y. A., Gong, X. Q., Hovde, S. L., Yamaguchi, Y., Handa, H., Geiger, J. H., … Burton, Z. F. (2003). NTP-driven Translocation by Human RNA Polymerase II. Journal of Biological Chemistry, 278(20), 18303-18312. doi:10.1074/jbc.m301103200
Gong, X. Q., Zhang, C., Feig, M., & Burton, Z. F. (2005). Dynamic Error Correction and Regulation of Downstream Bubble Opening by Human RNA Polymerase II. Molecular Cell, 18(4), 461-470. doi:10.1016/j.molcel.2005.04.011
Guajardo, R., & Sousa, R. (1997). A model for the mechanism of polymerase translocation 1 1Edited by A. R. Fersht. Journal of Molecular Biology, 265(1), 8-19. doi:10.1006/jmbi.1996.0707
Thomen, P., Lopez, P. J., & Heslot, F. (2005). Unravelling the Mechanism of RNA-Polymerase Forward Motion by Using Mechanical Force. Physical Review Letters, 94(12). doi:10.1103/physrevlett.94.128102
Larson, M. H., Zhou, J., Kaplan, C. D., Palangat, M., Kornberg, R. D., Landick, R., & Block, S. M. (2012). Trigger loop dynamics mediate the balance between the transcriptional fidelity and speed of RNA polymerase II. Proceedings of the National Academy of Sciences, 109(17), 6555-6560. doi:10.1073/pnas.1200939109
Bar-Nahum, G., Epshtein, V., Ruckenstein, A. E., Rafikov, R., Mustaev, A., & Nudler, E. (2005). A Ratchet Mechanism of Transcription Elongation and Its Control. Cell, 120(2), 183-193. doi:10.1016/j.cell.2004.11.045
Bai, L., Fulbright, R. M., & Wang, M. D. (2007). Mechanochemical Kinetics of Transcription Elongation. Physical Review Letters, 98(6). doi:10.1103/physrevlett.98.068103
Abbondanzieri, E. A., Greenleaf, W. J., Shaevitz, J. W., Landick, R., & Block, S. M. (2005). Direct observation of base-pair stepping by RNA polymerase. Nature, 438(7067), 460-465. doi:10.1038/nature04268
Dangkulwanich, M., Ishibashi, T., Liu, S., Kireeva, M. L., Lubkowska, L., Kashlev, M., & Bustamante, C. J. (2013). Complete dissection of transcription elongation reveals slow translocation of RNA polymerase II in a linear ratchet mechanism. eLife, 2. doi:10.7554/elife.00971
Lieberman, K. R., Dahl, J. M., Mai, A. H., Cox, A., Akeson, M., & Wang, H. (2013). Kinetic Mechanism of Translocation and dNTP Binding in Individual DNA Polymerase Complexes. Journal of the American Chemical Society, 135(24), 9149-9155. doi:10.1021/ja403640b
Lieberman, K. R., Dahl, J. M., Mai, A. H., Akeson, M., & Wang, H. (2012). Dynamics of the Translocation Step Measured in Individual DNA Polymerase Complexes. Journal of the American Chemical Society, 134(45), 18816-18823. doi:10.1021/ja3090302
Dahl, J. M., Mai, A. H., Cherf, G. M., Jetha, N. N., Garalde, D. R., Marziali, A., … Lieberman, K. R. (2012). Direct Observation of Translocation in Individual DNA Polymerase Complexes. Journal of Biological Chemistry, 287(16), 13407-13421. doi:10.1074/jbc.m111.338418
Rodriguez, I., Lazaro, J. M., Blanco, L., Kamtekar, S., Berman, A. J., Wang, J., … de Vega, M. (2005). A specific subdomain in 29 DNA polymerase confers both processivity and strand-displacement capacity. Proceedings of the National Academy of Sciences, 102(18), 6407-6412. doi:10.1073/pnas.0500597102
Morin, J. A., Cao, F. J., Valpuesta, J. M., Carrascosa, J. L., Salas, M., & Ibarra, B. (2012). Manipulation of single polymerase-DNA complexes: A mechanical view of DNA unwinding during replication. Cell Cycle, 11(16), 2967-2968. doi:10.4161/cc.21389
Morin, J. A., Cao, F. J., Lazaro, J. M., Arias-Gonzalez, J. R., Valpuesta, J. M., Carrascosa, J. L., … Ibarra, B. (2012). Active DNA unwinding dynamics during processive DNA replication. Proceedings of the National Academy of Sciences, 109(21), 8115-8120. doi:10.1073/pnas.1204759109
Ibarra, B., Chemla, Y. R., Plyasunov, S., Smith, S. B., Lázaro, J. M., Salas, M., & Bustamante, C. (2009). Proofreading dynamics of a processive DNA polymerase. The EMBO Journal, 28(18), 2794-2802. doi:10.1038/emboj.2009.219
Bustamante, C., Chemla, Y. R., Forde, N. R., & Izhaky, D. (2004). Mechanical Processes in Biochemistry. Annual Review of Biochemistry, 73(1), 705-748. doi:10.1146/annurev.biochem.72.121801.161542
Jahnel, M., Behrndt, M., Jannasch, A., Schäffer, E., & Grill, S. W. (2011). Measuring the complete force field of an optical trap. Optics Letters, 36(7), 1260. doi:10.1364/ol.36.001260
Soengas, M. S., Esteban, J. A., Lázaro, J. M., Bernad, A., Blasco, M. A., Salas, M., & Blanco, L. (1992). Site-directed mutagenesis at the Exo III motif of phi 29 DNA polymerase; overlapping structural domains for the 3′-5′ exonuclease and strand-displacement activities. The EMBO Journal, 11(11), 4227-4237. doi:10.1002/j.1460-2075.1992.tb05517.x
Soengas, M. S., Gutiérrez, C., & Salas, M. (1995). Helix-destabilizing Activity of φ29 Single-stranded DNA Binding Protein: Effect on the Elongation Rate During Strand Displacement DNA Replication. Journal of Molecular Biology, 253(4), 517-529. doi:10.1006/jmbi.1995.0570
De Vega, M., Lazaro, J. M., Salas, M., & Blanco, L. (1996). Primer-terminus stabilization at the 3′-5′ exonuclease active site of phi29 DNA polymerase. Involvement of two amino acid residues highly conserved in proofreading DNA polymerases. The EMBO Journal, 15(5), 1182-1192. doi:10.1002/j.1460-2075.1996.tb00457.x
Visscher, K., Schnitzer, M. J., & Block, S. M. (1999). Single kinesin molecules studied with a molecular force clamp. Nature, 400(6740), 184-189. doi:10.1038/22146
Pandey, M., & Patel, S. S. (2014). Helicase and Polymerase Move Together Close to the Fork Junction and Copy DNA in One-Nucleotide Steps. Cell Reports, 6(6), 1129-1138. doi:10.1016/j.celrep.2014.02.025
Truniger, V. (2002). A positively charged residue of phi29 DNA polymerase, highly conserved in DNA polymerases from families A and B, is involved in binding the incoming nucleotide. Nucleic Acids Research, 30(7), 1483-1492. doi:10.1093/nar/30.7.1483
Berman, A. J., Kamtekar, S., Goodman, J. L., Lázaro, J. M., de Vega, M., Blanco, L., … Steitz, T. A. (2007). Structures of phi29 DNA polymerase complexed with substrate: the mechanism of translocation in B-family polymerases. The EMBO Journal, 26(14), 3494-3505. doi:10.1038/sj.emboj.7601780
Thomen, P., Lopez, P. J., Bockelmann, U., Guillerez, J., Dreyfus, M., & Heslot, F. (2008). T7 RNA Polymerase Studied by Force Measurements Varying Cofactor Concentration. Biophysical Journal, 95(5), 2423-2433. doi:10.1529/biophysj.107.125096
Keller, D., & Bustamante, C. (2000). The Mechanochemistry of Molecular Motors. Biophysical Journal, 78(2), 541-556. doi:10.1016/s0006-3495(00)76615-x
Herbert, K. M., Greenleaf, W. J., & Block, S. M. (2008). Single-Molecule Studies of RNA Polymerase: Motoring Along. Annual Review of Biochemistry, 77(1), 149-176. doi:10.1146/annurev.biochem.77.073106.100741
Wong, I., Patel, S. S., & Johnson, K. A. (1991). An induced-fit kinetic mechanism for DNA replication fidelity: direct measurement by single-turnover kinetics. Biochemistry, 30(2), 526-537. doi:10.1021/bi00216a030
Lowe, L. G., & Guengerich, F. P. (1996). Steady-State and Pre-Steady-State Kinetic Analysis of dNTP Insertion Opposite 8-Oxo-7,8-dihydroguanine byEscherichia coliPolymerases I exo-and II exo- †. Biochemistry, 35(30), 9840-9849. doi:10.1021/bi960485x
Kirmizialtin, S., Nguyen, V., Johnson, K. A., & Elber, R. (2012). How Conformational Dynamics of DNA Polymerase Select Correct Substrates: Experiments and Simulations. Structure, 20(4), 618-627. doi:10.1016/j.str.2012.02.018
Donlin, M. J., Patel, S. S., & Johnson, K. A. (1991). Kinetic partitioning between the exonuclease and polymerase sites in DNA error correction. Biochemistry, 30(2), 538-546. doi:10.1021/bi00216a031
Li, Y. (1998). Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation. The EMBO Journal, 17(24), 7514-7525. doi:10.1093/emboj/17.24.7514
Lieberman, K. R., Dahl, J. M., & Wang, H. (2014). Kinetic Mechanism at the Branchpoint between the DNA Synthesis and Editing Pathways in Individual DNA Polymerase Complexes. Journal of the American Chemical Society, 136(19), 7117-7131. doi:10.1021/ja5026408
Subuddhi, U., Hogg, M., & Reha-Krantz, L. J. (2008). Use of 2-Aminopurine Fluorescence To Study the Role of the β Hairpin in the Proofreading Pathway Catalyzed by the Phage T4 and RB69 DNA Polymerases†. Biochemistry, 47(23), 6130-6137. doi:10.1021/bi800211f
Shamoo, Y., & Steitz, T. A. (1999). Building a Replisome from Interacting Pieces. Cell, 99(2), 155-166. doi:10.1016/s0092-8674(00)81647-5
Lamichhane, R., Berezhna, S. Y., Gill, J. P., Van der Schans, E., & Millar, D. P. (2013). Dynamics of Site Switching in DNA Polymerase. Journal of the American Chemical Society, 135(12), 4735-4742. doi:10.1021/ja311641b
Kamtekar, S., Berman, A. J., Wang, J., Lázaro, J. M., de Vega, M., Blanco, L., … Steitz, T. A. (2004). Insights into Strand Displacement and Processivity from the Crystal Structure of the Protein-Primed DNA Polymerase of Bacteriophage φ29. Molecular Cell, 16(4), 609-618. doi:10.1016/j.molcel.2004.10.019
Hogg, M., Wallace, S. S., & Doublié, S. (2004). Crystallographic snapshots of a replicative DNA polymerase encountering an abasic site. The EMBO Journal, 23(7), 1483-1493. doi:10.1038/sj.emboj.7600150
Seifert, U. (2012). Stochastic thermodynamics, fluctuation theorems and molecular machines. Reports on Progress in Physics, 75(12), 126001. doi:10.1088/0034-4885/75/12/126001
Cao, F. J., & Feito, M. (2009). Thermodynamics of feedback controlled systems. Physical Review E, 79(4). doi:10.1103/physreve.79.041118
Cao, F. J., Dinis, L., & Parrondo, J. M. R. (2004). Feedback Control in a Collective Flashing Ratchet. Physical Review Letters, 93(4). doi:10.1103/physrevlett.93.040603
Bier, M. (2007). The stepping motor protein as a feedback control ratchet. Biosystems, 88(3), 301-307. doi:10.1016/j.biosystems.2006.07.013
Astumian, R. D. (1997). Thermodynamics and Kinetics of a Brownian Motor. Science, 276(5314), 917-922. doi:10.1126/science.276.5314.917
Komissarova, N., & Kashlev, M. (1997). Transcriptional arrest: Escherichia coli RNA polymerase translocates backward, leaving the 3’ end of the RNA intact and extruded. Proceedings of the National Academy of Sciences, 94(5), 1755-1760. doi:10.1073/pnas.94.5.1755
Brueckner, F., & Cramer, P. (2008). Structural basis of transcription inhibition by α-amanitin and implications for RNA polymerase II translocation. Nature Structural & Molecular Biology, 15(8), 811-818. doi:10.1038/nsmb.1458
[-]