- -

Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube

Mostrar el registro completo del ítem

Albert, A.; Andre, M.; Anghinolfi, M.; Ardid Ramírez, M.; Aubert, J.; Aublin, J.; Avgitas, T.... (2019). Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube. The Astrophysical Journal. 870(2):1-16. https://doi.org/10.3847/1538-4357/aaf21d

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/154111

Ficheros en el ítem

Metadatos del ítem

Título: Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube
Autor: Albert, A. Andre, M. Anghinolfi, M. Ardid Ramírez, Miguel Aubert, J.J. Aublin, J. Avgitas, T. Baret, B. Barrios-Marti, J. Basa, S. Belhorma, B. Bertin, V. Biagi, S. Bormuth, R. Boumaaza, J. Martínez Mora, Juan Antonio Saldaña-Coscollar, María
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy ...[+]
Palabras clave: Gravitational waves , Neutrinos
Derechos de uso: Reconocimiento (by)
Fuente:
The Astrophysical Journal. (issn: 0004-637X )
DOI: 10.3847/1538-4357/aaf21d
Editorial:
American Astronomical Society
Versión del editor: https://doi.org/10.3847/1538-4357/aaf21d
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//FPA2015-65150-C3-1-P/ES/PARTICIPACION DEL IFIC EN ANTARES, KM3NET-ARCA%2FORCA Y PDG/
...[+]
info:eu-repo/grantAgreement/MINECO//FPA2015-65150-C3-1-P/ES/PARTICIPACION DEL IFIC EN ANTARES, KM3NET-ARCA%2FORCA Y PDG/
info:eu-repo/grantAgreement/ANR//ANR-11-LABX-0060/FR/Origines, Constituants et EVolution de l'Univers/OCEVU/
info:eu-repo/grantAgreement/ANR//ANR-11-IDEX-0005/FR/Université Sorbonne Paris Cité/USPC/
info:eu-repo/grantAgreement/ANR//ANR-11-IDEX-0001/FR/INITIATIVE D'EXCELLENCE AIX MARSEILLE UNIVERSITE/Amidex/
info:eu-repo/grantAgreement/ANR//ANR-10-LABX-0023/FR/Earth - Planets - Universe: observation, modeling, transfer/UnivEarthS/
info:eu-repo/grantAgreement/MINECO//FPA2015-65150-C3-3-P/ES/PARTICIPACION DE LA UGR EN ANTARES, KM3NET-ARCA%2FORCA Y PDG/
info:eu-repo/grantAgreement/MINECO//FPA2015-65150-C3-2-P/ES/PARTICIPACION DE LA UPV EN ANTARES Y KM3NET-ARCA%2FORCA/
info:eu-repo/grantAgreement/AEI//FPA2017-90566-REDC/ES/RED CONSOLIDER MULTIDARK/
[-]
Agradecimientos:
The ANTARES Collaboration acknowledge the financial support of the funding agencies: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'energie atomique et aux energies alternatives (CEA), Commission ...[+]
Tipo: Artículo

References

The Pierre Auger Cosmic Ray Observatory. (2015). Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 798, 172-213. doi:10.1016/j.nima.2015.06.058

Aartsen, M. G., Abbasi, R., Abdou, Y., Ackermann, M., Adams, J., Aguilar, J. A., … Bai, X. (2013). First Observation of PeV-Energy Neutrinos with IceCube. Physical Review Letters, 111(2). doi:10.1103/physrevlett.111.021103

(2013). Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector. Science, 342(6161), 1242856-1242856. doi:10.1126/science.1242856 [+]
The Pierre Auger Cosmic Ray Observatory. (2015). Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 798, 172-213. doi:10.1016/j.nima.2015.06.058

Aartsen, M. G., Abbasi, R., Abdou, Y., Ackermann, M., Adams, J., Aguilar, J. A., … Bai, X. (2013). First Observation of PeV-Energy Neutrinos with IceCube. Physical Review Letters, 111(2). doi:10.1103/physrevlett.111.021103

(2013). Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector. Science, 342(6161), 1242856-1242856. doi:10.1126/science.1242856

Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., … Arlen, T. C. (2014). Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube. Physical Review D, 90(10). doi:10.1103/physrevd.90.102002

Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., … Ansseau, I. (2017). The IceCube Neutrino Observatory: instrumentation and online systems. Journal of Instrumentation, 12(03), P03012-P03012. doi:10.1088/1748-0221/12/03/p03012

Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., … Ansseau, I. (2017). The IceCube realtime alert system. Astroparticle Physics, 92, 30-41. doi:10.1016/j.astropartphys.2017.05.002

Aartsen, M. G., Abraham, K., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., … Anderson, T. (2017). All-sky Search for Time-integrated Neutrino Emission from Astrophysical Sources with 7 yr of IceCube Data. The Astrophysical Journal, 835(2), 151. doi:10.3847/1538-4357/835/2/151

Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., … Anderson, T. (2017). Extending the Search for Muon Neutrinos Coincident with Gamma-Ray Bursts in IceCube Data. The Astrophysical Journal, 843(2), 112. doi:10.3847/1538-4357/aa7569

Abadie, J., Abbott, B. P., Abbott, R., Accadia, T., Acernese, F., Adhikari, R., … Amador Ceron, E. (2010). All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. Physical Review D, 81(10). doi:10.1103/physrevd.81.102001

(2012). An absence of neutrinos associated with cosmic-ray acceleration in γ-ray bursts. Nature, 484(7394), 351-354. doi:10.1038/nature11068

Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M. R., Acernese, F., Ackley, K., … Adhikari, R. X. (2016). Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 6(4). doi:10.1103/physrevx.6.041015

Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M. R., Acernese, F., Ackley, K., … Adhikari, R. X. (2016). Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D, 93(12). doi:10.1103/physrevd.93.122004

Abbott, B. P., Abbott, R., Abbott, T. D., Acernese, F., Ackley, K., Adams, C., … Adya, V. B. (2017). GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 118(22). doi:10.1103/physrevlett.118.221101

Abbott, B. P., Abbott, R., Abbott, T. D., Acernese, F., Ackley, K., Adams, C., … Adya, V. B. (2017). GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. The Astrophysical Journal, 851(2), L35. doi:10.3847/2041-8213/aa9f0c

Abbott, B. P., Abbott, R., Abbott, T. D., Acernese, F., Ackley, K., Adams, C., … Adya, V. B. (2017). GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 119(14). doi:10.1103/physrevlett.119.141101

Abbott, B. P., Abbott, R., Abbott, T. D., Acernese, F., Ackley, K., Adams, C., … Adya, V. B. (2017). GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 119(16). doi:10.1103/physrevlett.119.161101

Abe, K., Haga, K., Hayato, Y., Ikeda, M., Iyogi, K., Kameda, J., … Nakahata, M. (2016). SEARCH FOR NEUTRINOS IN SUPER-KAMIOKANDE ASSOCIATED WITH GRAVITATIONAL-WAVE EVENTS GW150914 AND GW151226. The Astrophysical Journal, 830(1), L11. doi:10.3847/2041-8205/830/1/l11

Acernese, F., Agathos, M., Agatsuma, K., Aisa, D., Allemandou, N., Allocca, A., … Ballardin, G. (2014). Advanced Virgo: a second-generation interferometric gravitational wave detector. Classical and Quantum Gravity, 32(2), 024001. doi:10.1088/0264-9381/32/2/024001

Adrián-Martínez, S., Ageron, M., Aguilar, J. A., Samarai, I. A., Albert, A., André, M., … Ardid, M. (2012). The positioning system of the ANTARES Neutrino Telescope. Journal of Instrumentation, 7(08), T08002-T08002. doi:10.1088/1748-0221/7/08/t08002

Adrián-Martínez, S., Ageron, M., Aharonian, F., Aiello, S., Albert, A., Ameli, F., … Anghinolfi, M. (2016). Letter of intent for KM3NeT 2.0. Journal of Physics G: Nuclear and Particle Physics, 43(8), 084001. doi:10.1088/0954-3899/43/8/084001

Adrián-Martínez, S., Albert, A., André, M., Anghinolfi, M., Anton, G., Ardid, M., … Barrios-Martí, J. (2016). High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Physical Review D, 93(12). doi:10.1103/physrevd.93.122010

Adrián-Martínez, S., Samarai, I. A., Albert, A., André, M., Anghinolfi, M., Anton, G., … Aubert, J.-J. (2013). A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. Journal of Cosmology and Astroparticle Physics, 2013(06), 008-008. doi:10.1088/1475-7516/2013/06/008

Adrián-Martínez, S., Albert, A., Al Samarai, I., André, M., Anghinolfi, M., Anton, G., … Aubert, J.-J. (2013). Search for muon neutrinos from gamma-ray bursts with the ANTARES neutrino telescope using 2008 to 2011 data. Astronomy & Astrophysics, 559, A9. doi:10.1051/0004-6361/201322169

Ageron, M., Aguilar, J. A., Al Samarai, I., Albert, A., Ameli, F., André, M., … Ardid, M. (2011). ANTARES: The first undersea neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 656(1), 11-38. doi:10.1016/j.nima.2011.06.103

Agostini, M., Altenmüller, K., Appel, S., Atroshchenko, V., Bagdasarian, Z., Basilico, D., … Bonfini, G. (2017). A Search for Low-energy Neutrinos Correlated with Gravitational Wave Events GW 150914, GW 151226, and GW 170104 with the Borexino Detector. The Astrophysical Journal, 850(1), 21. doi:10.3847/1538-4357/aa9521

Aguilar, J. A., Albert, A., Ameli, F., Anghinolfi, M., Anton, G., Anvar, S., … Basa, S. (2007). The data acquisition system for the ANTARES neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 570(1), 107-116. doi:10.1016/j.nima.2006.09.098

Aguilar, J. A., Al Samarai, I., Albert, A., André, M., Anghinolfi, M., Anton, G., … Astraatmadja, T. (2011). Time calibration of the ANTARES neutrino telescope. Astroparticle Physics, 34(7), 539-549. doi:10.1016/j.astropartphys.2010.12.004

Albert, A., André, M., Anghinolfi, M., Anton, G., Ardid, M., Aubert, J.-J., … Basa, S. (2017). Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. Physical Review D, 96(2). doi:10.1103/physrevd.96.022005

Albert, A., André, M., Anghinolfi, M., Anton, G., Ardid, M., Aubert, J.-J., … Basa, S. (2017). All-sky search for high-energy neutrinos from gravitational wave event GW170104 with the Antares neutrino telescope. The European Physical Journal C, 77(12). doi:10.1140/epjc/s10052-017-5451-z

Albert, A., André, M., Anghinolfi, M., Ardid, M., Aubert, J.-J., Aublin, J., … Basa, S. (2017). Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. The Astrophysical Journal, 850(2), L35. doi:10.3847/2041-8213/aa9aed

Albert, A., André, M., Anghinolfi, M., Anton, G., Ardid, M., Aubert, J.-J., … Barrios-Martí, J. (2018). All-flavor Search for a Diffuse Flux of Cosmic Neutrinos with Nine Years of ANTARES Data. The Astrophysical Journal, 853(1), L7. doi:10.3847/2041-8213/aaa4f6

Albert, A., André, M., Anghinolfi, M., Anton, G., Ardid, M., Aubert, J.-J., … Barrios-Martí, J. (2018). The Search for Neutrinos from TXS 0506+056 with the ANTARES Telescope. The Astrophysical Journal, 863(2), L30. doi:10.3847/2041-8213/aad8c0

Alexander, K. D., Margutti, R., Blanchard, P. K., Fong, W., Berger, E., Hajela, A., … Zrake, J. (2018). A Decline in the X-Ray through Radio Emission from GW170817 Continues to Support an Off-axis Structured Jet. The Astrophysical Journal, 863(2), L18. doi:10.3847/2041-8213/aad637

Baret, B., Bartos, I., Bouhou, B., Corsi, A., Palma, I. D., Donzaud, C., … Sutton, P. (2011). Bounding the time delay between high-energy neutrinos and gravitational-wave transients from gamma-ray bursts. Astroparticle Physics, 35(1), 1-7. doi:10.1016/j.astropartphys.2011.04.001

Baret, B., Bartos, I., Bouhou, B., Chassande-Mottin, E., Corsi, A., Di Palma, I., … Vedovato, G. (2012). Multimessenger science reach and analysis method for common sources of gravitational waves and high-energy neutrinos. Physical Review D, 85(10). doi:10.1103/physrevd.85.103004

Bartos, I., Brady, P., & Márka, S. (2013). How gravitational-wave observations can shape the gamma-ray burst paradigm. Classical and Quantum Gravity, 30(12), 123001. doi:10.1088/0264-9381/30/12/123001

Bartos, I., Dasgupta, B., & Márka, S. (2012). Probing the structure of jet-driven core-collapse supernova and long gamma-ray burst progenitors with high-energy neutrinos. Physical Review D, 86(8). doi:10.1103/physrevd.86.083007

Bartos, I., Finley, C., Corsi, A., & Márka, S. (2011). Observational Constraints on Multimessenger Sources of Gravitational Waves and High-Energy Neutrinos. Physical Review Letters, 107(25). doi:10.1103/physrevlett.107.251101

Bartos, I., Haiman, Z., Marka, Z., Metzger, B. D., Stone, N. C., & Marka, S. (2017). Gravitational-wave localization alone can probe origin of stellar-mass black hole mergers. Nature Communications, 8(1). doi:10.1038/s41467-017-00851-7

Bartos, I., Kocsis, B., Haiman, Z., & Márka, S. (2017). Rapid and Bright Stellar-mass Binary Black Hole Mergers in Active Galactic Nuclei. The Astrophysical Journal, 835(2), 165. doi:10.3847/1538-4357/835/2/165

Berger, E. (2014). Short-Duration Gamma-Ray Bursts. Annual Review of Astronomy and Astrophysics, 52(1), 43-105. doi:10.1146/annurev-astro-081913-035926

Bernuzzi, S., Radice, D., Ott, C. D., Roberts, L. F., Mösta, P., & Galeazzi, F. (2016). How loud are neutron star mergers? Physical Review D, 94(2). doi:10.1103/physrevd.94.024023

Biehl, D., Heinze, J., & Winter, W. (2018). Expected neutrino fluence from short Gamma-Ray Burst 170817A and off-axis angle constraints. Monthly Notices of the Royal Astronomical Society, 476(1), 1191-1197. doi:10.1093/mnras/sty285

Connaughton, V., Burns, E., Goldstein, A., Blackburn, L., Briggs, M. S., Zhang, B.-B., … Veres, P. (2016). FERMI GBM OBSERVATIONS OF LIGO GRAVITATIONAL-WAVE EVENT GW150914. The Astrophysical Journal, 826(1), L6. doi:10.3847/2041-8205/826/1/l6

Corsi, A., & Mészáros, P. (2009). GAMMA-RAY BURST AFTERGLOW PLATEAUS AND GRAVITATIONAL WAVES: MULTI-MESSENGER SIGNATURE OF A MILLISECOND MAGNETAR? The Astrophysical Journal, 702(2), 1171-1178. doi:10.1088/0004-637x/702/2/1171

Dai, L., McKinney, J. C., & Miller, M. C. (2017). Energetic constraints on electromagnetic signals from double black hole mergers. Monthly Notices of the Royal Astronomical Society: Letters, 470(1), L92-L96. doi:10.1093/mnrasl/slx086

Mink, S. E. de, & King, A. (2017). Electromagnetic Signals Following Stellar-mass Black Hole Mergers. The Astrophysical Journal, 839(1), L7. doi:10.3847/2041-8213/aa67f3

Fang, K., & Metzger, B. D. (2017). High-energy Neutrinos from Millisecond Magnetars Formed from the Merger of Binary Neutron Stars. The Astrophysical Journal, 849(2), 153. doi:10.3847/1538-4357/aa8b6a

Fryer, C. L., Holz, D. E., & Hughes, S. A. (2002). Gravitational Wave Emission from Core Collapse of Massive Stars. The Astrophysical Journal, 565(1), 430-446. doi:10.1086/324034

Gando, A., Gando, Y., Hachiya, T., Hayashi, A., Hayashida, S., … Ikeda, H. (2016). A SEARCH FOR ELECTRON ANTINEUTRINOS ASSOCIATED WITH GRAVITATIONAL-WAVE EVENTS GW150914 AND GW151226 USING KAMLAND. The Astrophysical Journal, 829(2), L34. doi:10.3847/2041-8205/829/2/l34

Gottlieb, O., Nakar, E., Piran, T., & Hotokezaka, K. (2018). A cocoon shock breakout as the origin of the γ-ray emission in GW170817. Monthly Notices of the Royal Astronomical Society. doi:10.1093/mnras/sty1462

Gupta, A., Arun, K. G., & Sathyaprakash, B. S. (2017). Implications of Binary Black Hole Detections on the Merger Rates of Double Neutron Stars and Neutron Star–Black Holes. The Astrophysical Journal, 849(1), L14. doi:10.3847/2041-8213/aa9271

Haggard, D., Nynka, M., Ruan, J. J., Kalogera, V., Cenko, S. B., Evans, P., & Kennea, J. A. (2017). A Deep Chandra X-Ray Study of Neutron Star Coalescence GW170817. The Astrophysical Journal, 848(2), L25. doi:10.3847/2041-8213/aa8ede

Halzen, F., & Hooper, D. (2002). High-energy neutrino astronomy: the cosmic ray connection. Reports on Progress in Physics, 65(7), 1025-1078. doi:10.1088/0034-4885/65/7/201

Ioka, K., & Nakamura, T. (2018). Can an off-axis gamma-ray burst jet in GW170817 explain all the electromagnetic counterparts? Progress of Theoretical and Experimental Physics, 2018(4). doi:10.1093/ptep/pty036

Kashiyama, K., Murase, K., Bartos, I., Kiuchi, K., & Margutti, R. (2016). MULTI-MESSENGER TESTS FOR FAST-SPINNING NEWBORN PULSARS EMBEDDED IN STRIPPED-ENVELOPE SUPERNOVAE. The Astrophysical Journal, 818(1), 94. doi:10.3847/0004-637x/818/1/94

Kimura, S. S., Murase, K., Mészáros, P., & Kiuchi, K. (2017). High-energy Neutrino Emission from Short Gamma-Ray Bursts: Prospects for Coincident Detection with Gravitational Waves. The Astrophysical Journal, 848(1), L4. doi:10.3847/2041-8213/aa8d14

Kimura, S. S., Takahashi, S. Z., & Toma, K. (2016). Evolution of an accretion disc in binary black hole systems. Monthly Notices of the Royal Astronomical Society, 465(4), 4406-4413. doi:10.1093/mnras/stw3036

Kintscher, T. (2016). Results and prospects of IceCube’s real time alert capabilities. Journal of Physics: Conference Series, 718, 062029. doi:10.1088/1742-6596/718/6/062029

Klimenko, S., Vedovato, G., Drago, M., Mazzolo, G., Mitselmakher, G., Pankow, C., … Yakushin, I. (2011). Localization of gravitational wave sources with networks of advanced detectors. Physical Review D, 83(10). doi:10.1103/physrevd.83.102001

Klimenko, S., Vedovato, G., Drago, M., Salemi, F., Tiwari, V., Prodi, G. A., … Mitselmakher, G. (2016). Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors. Physical Review D, 93(4). doi:10.1103/physrevd.93.042004

Klimenko, S., Yakushin, I., Mercer, A., & Mitselmakher, G. (2008). A coherent method for detection of gravitational wave bursts. Classical and Quantum Gravity, 25(11), 114029. doi:10.1088/0264-9381/25/11/114029

Kotake, K., Sumiyoshi, K., Yamada, S., Takiwaki, T., Kuroda, T., Suwa, Y., & Nagakura, H. (2012). Core-collapse supernovae as supercomputing science: A status report toward six-dimensional simulations with exact Boltzmann neutrino transport in full general relativity. Progress of Theoretical and Experimental Physics, 2012(1). doi:10.1093/ptep/pts009

Kotera, K., & Silk, J. (2016). ULTRAHIGH-ENERGY COSMIC RAYS AND BLACK HOLE MERGERS. The Astrophysical Journal, 823(2), L29. doi:10.3847/2041-8205/823/2/l29

Lazzati, D., Perna, R., Morsony, B. J., Lopez-Camara, D., Cantiello, M., Ciolfi, R., … Workman, J. C. (2018). Late Time Afterglow Observations Reveal a Collimated Relativistic Jet in the Ejecta of the Binary Neutron Star Merger GW170817. Physical Review Letters, 120(24). doi:10.1103/physrevlett.120.241103

Li, W., Chornock, R., Leaman, J., Filippenko, A. V., Poznanski, D., Wang, X., … Mannucci, F. (2011). Nearby supernova rates from the Lick Observatory Supernova Search - III. The rate-size relation, and the rates as a function of galaxy Hubble type and colour. Monthly Notices of the Royal Astronomical Society, 412(3), 1473-1507. doi:10.1111/j.1365-2966.2011.18162.x

Loeb, A. (2016). ELECTROMAGNETIC COUNTERPARTS TO BLACK HOLE MERGERS DETECTED BY LIGO. The Astrophysical Journal, 819(2), L21. doi:10.3847/2041-8205/819/2/l21

Loeb, A., & Waxman, E. (2006). The cumulative background of high energy neutrinos from starburst galaxies. Journal of Cosmology and Astroparticle Physics, 2006(05), 003-003. doi:10.1088/1475-7516/2006/05/003

Mészáros, P., & Waxman, E. (2001). TeV Neutrinos from Successful and Choked Gamma-Ray Bursts. Physical Review Letters, 87(17). doi:10.1103/physrevlett.87.171102

Moharana, R., Razzaque, S., Gupta, N., & Mészáros, P. (2016). High-energy neutrinos from the gravitational wave event GW150914 possibly associated with a short gamma-ray burst. Physical Review D, 93(12). doi:10.1103/physrevd.93.123011

Mooley, K. P., Deller, A. T., Gottlieb, O., Nakar, E., Hallinan, G., Bourke, S., … Hotokezaka, K. (2018). Superluminal motion of a relativistic jet in the neutron-star merger GW170817. Nature, 561(7723), 355-359. doi:10.1038/s41586-018-0486-3

Mooley, K. P., Nakar, E., Hotokezaka, K., Hallinan, G., Corsi, A., Frail, D. A., … Singer, L. P. (2017). A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817. Nature, 554(7691), 207-210. doi:10.1038/nature25452

Müller, B., Janka, H.-T., & Marek, A. (2013). A NEW MULTI-DIMENSIONAL GENERAL RELATIVISTIC NEUTRINO HYDRODYNAMICS CODE OF CORE-COLLAPSE SUPERNOVAE. III. GRAVITATIONAL WAVE SIGNALS FROM SUPERNOVA EXPLOSION MODELS. The Astrophysical Journal, 766(1), 43. doi:10.1088/0004-637x/766/1/43

Murase, K., Kashiyama, K., Mészáros, P., Shoemaker, I., & Senno, N. (2016). ULTRAFAST OUTFLOWS FROM BLACK HOLE MERGERS WITH A MINIDISK. The Astrophysical Journal, 822(1), L9. doi:10.3847/2041-8205/822/1/l9

Perna, R., Lazzati, D., & Giacomazzo, B. (2016). SHORT GAMMA-RAY BURSTS FROM THE MERGER OF TWO BLACK HOLES. The Astrophysical Journal, 821(1), L18. doi:10.3847/2041-8205/821/1/l18

Piro, A. L., & Thrane, E. (2012). GRAVITATIONAL WAVES FROM FALLBACK ACCRETION ONTO NEUTRON STARS. The Astrophysical Journal, 761(1), 63. doi:10.1088/0004-637x/761/1/63

Razzaque, S., Mészáros, P., & Waxman, E. (2003). Neutrino tomography of gamma ray bursts and massive stellar collapses. Physical Review D, 68(8). doi:10.1103/physrevd.68.083001

Senno, N., Murase, K., & Mészáros, P. (2016). Choked jets and low-luminosity gamma-ray bursts as hidden neutrino sources. Physical Review D, 93(8). doi:10.1103/physrevd.93.083003

Singer, L. P., Price, L. R., Farr, B., Urban, A. L., Pankow, C., Vitale, S., … Vecchio, A. (2014). THE FIRST TWO YEARS OF ELECTROMAGNETIC FOLLOW-UP WITH ADVANCED LIGO AND VIRGO. The Astrophysical Journal, 795(2), 105. doi:10.1088/0004-637x/795/2/105

Stone, N. C., Metzger, B. D., & Haiman, Z. (2016). Assisted inspirals of stellar mass black holes embedded in AGN discs: solving the ‘final au problem’. Monthly Notices of the Royal Astronomical Society, 464(1), 946-954. doi:10.1093/mnras/stw2260

Tamborra, I., & Ando, S. (2016). Inspecting the supernova–gamma-ray-burst connection with high-energy neutrinos. Physical Review D, 93(5). doi:10.1103/physrevd.93.053010

Waxman, E., & Bahcall, J. (1997). High Energy Neutrinos from Cosmological Gamma-Ray Burst Fireballs. Physical Review Letters, 78(12), 2292-2295. doi:10.1103/physrevlett.78.2292

Yakunin, K. N., Marronetti, P., Mezzacappa, A., Bruenn, S. W., Lee, C.-T., Chertkow, M. A., … Yoshida, S. (2010). Gravitational waves from core collapse supernovae. Classical and Quantum Gravity, 27(19), 194005. doi:10.1088/0264-9381/27/19/194005

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem