Mostrar el registro sencillo del ítem
dc.contributor.author | Cucciniello, Raffaele | es_ES |
dc.contributor.author | Intiso, Adriano | es_ES |
dc.contributor.author | Siciliano, Tiziana | es_ES |
dc.contributor.author | Palomares Gimeno, Antonio Eduardo | es_ES |
dc.contributor.author | Martínez-Triguero, Joaquín | es_ES |
dc.contributor.author | Cerrillo, José Luis | es_ES |
dc.contributor.author | Proto, Antonio | es_ES |
dc.contributor.author | Rossi, Federico | es_ES |
dc.date.accessioned | 2020-11-17T04:32:16Z | |
dc.date.available | 2020-11-17T04:32:16Z | |
dc.date.issued | 2019-09-05 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/155121 | |
dc.description.abstract | [EN] Mayenite was recently successfully employed as an active catalyst for trichloroethylene (TCE) oxidation. It was effective in promoting the conversion of TCE in less harmful products (CO2 and HCl) with high activity and selectivity. However, there is a potential limitation to the use of mayenite in the industrial degradation of chlorinated compounds-its limited operating lifespan owing to chlorine poisoning of the catalyst. To overcome this problem, in this work, mayenite-based catalysts loaded with iron (Fe/mayenite) were prepared and tested for TCE oxidation in a gaseous phase. The catalysts were characterized using different physico-chemical techniques, including XRD, ICP, N-2-sorption (BET), H-2-TPR analysis, SEM-EDX, XPS FESEM-EDS, and Raman. Fe/mayenite was found to be more active and stable than the pure material for TCE oxidation, maintaining the same selectivity. This result was interpreted as the synergistic effect of the metal and the oxo-anionic species present in the mayenite framework, thus promoting TCE oxidation, while avoiding catalyst deactivation. | es_ES |
dc.description.sponsorship | This work was supported by the grants ORSA167988 and ORSA174250 funded by the University of Salerno. AEP and JLC thank the Spanish Ministry of Economy and Competitiveness through RTI2018-101784-B-I00 and SEV-2016-0683 for the financial support. J.L. Cerrillo wishes to thank the Spanish Ministry of Economy and Competitiveness for the Severo Ochoa PhD fellowship (SVP-2014-068600). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Catalysts | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Trichloroethylene | es_ES |
dc.subject | Mayenite | es_ES |
dc.subject | Catalytic oxidation | es_ES |
dc.subject | Iron | es_ES |
dc.subject | Chlorine poisoning | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.title | Oxidative Degradation of Trichloroethylene over Fe2O3-doped Mayenite: Chlorine Poisoning Mitigation and Improved Catalytic Performance | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/catal9090747 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SVP-2014-068600/ES/SVP-2014-068600/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101784-B-I00/ES/NUEVOS MATERIALES ZEOLITICOS PARA PROCESOS DE SEPARACION SELECTIVA DE GASES, APLICACIONES MEDIOAMBIENTALES Y CONSERVACION DE ALIMENTOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UNISA//ORSA167988/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UNISA//ORSA174250/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.description.bibliographicCitation | Cucciniello, R.; Intiso, A.; Siciliano, T.; Palomares Gimeno, AE.; Martínez-Triguero, J.; Cerrillo, JL.; Proto, A.... (2019). Oxidative Degradation of Trichloroethylene over Fe2O3-doped Mayenite: Chlorine Poisoning Mitigation and Improved Catalytic Performance. Catalysts. 9(9):1-13. https://doi.org/10.3390/catal9090747 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/catal9090747 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 9 | es_ES |
dc.identifier.eissn | 2073-4344 | es_ES |
dc.relation.pasarela | S\411689 | es_ES |
dc.contributor.funder | Università degli Studi di Salerno | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Rossi, F., Cucciniello, R., Intiso, A., Proto, A., Motta, O., & Marchettini, N. (2015). Determination of the trichloroethylene diffusion coefficient in water. AIChE Journal, 61(10), 3511-3515. doi:10.1002/aic.14861 | es_ES |
dc.description.references | Ko, J. H., Musson, S., & Townsend, T. (2010). Destruction of trichloroethylene during hydration of calcium oxide. Journal of Hazardous Materials, 174(1-3), 876-879. doi:10.1016/j.jhazmat.2009.09.043 | es_ES |
dc.description.references | Ge, J., Huang, S., Han, I., & Jaffé, P. R. (2019). Degradation of tetra- and trichloroethylene under iron reducing conditions by Acidimicrobiaceae sp. A6. Environmental Pollution, 247, 248-255. doi:10.1016/j.envpol.2019.01.066 | es_ES |
dc.description.references | Moccia, E., Intiso, A., Cicatelli, A., Proto, A., Guarino, F., Iannece, P., … Rossi, F. (2016). Use of Zea mays L. in phytoremediation of trichloroethylene. Environmental Science and Pollution Research, 24(12), 11053-11060. doi:10.1007/s11356-016-7570-8 | es_ES |
dc.description.references | Meyer, C. I., Borgna, A., Monzón, A., & Garetto, T. F. (2011). Kinetic study of trichloroethylene combustion on exchanged zeolites catalysts. Journal of Hazardous Materials, 190(1-3), 903-908. doi:10.1016/j.jhazmat.2011.04.007 | es_ES |
dc.description.references | Cucciniello, R., Proto, A., Rossi, F., Marchettini, N., & Motta, O. (2015). An improved method for BTEX extraction from charcoal. Analytical Methods, 7(11), 4811-4815. doi:10.1039/c5ay00828j | es_ES |
dc.description.references | Intiso, A., Miele, Y., Marchettini, N., Proto, A., Sánchez-Domínguez, M., & Rossi, F. (2018). Enhanced solubility of trichloroethylene (TCE) by a poly-oxyethylene alcohol as green surfactant. Environmental Technology & Innovation, 12, 72-79. doi:10.1016/j.eti.2018.08.001 | es_ES |
dc.description.references | Garza‐Arévalo, J. I., Intiso, A., Proto, A., Rossi, F., & Sanchez‐Dominguez, M. (2019). Trichloroethylene solubilization using a series of commercial biodegradable ethoxylated fatty alcohol surfactants. Journal of Chemical Technology & Biotechnology, 94(11), 3523-3529. doi:10.1002/jctb.5965 | es_ES |
dc.description.references | Aranzabal, A., Pereda-Ayo, B., González-Marcos, M., González-Marcos, J., López-Fonseca, R., & González-Velasco, J. (2014). State of the art in catalytic oxidation of chlorinated volatile organic compounds. Chemical Papers, 68(9). doi:10.2478/s11696-013-0505-7 | es_ES |
dc.description.references | Li, D., Li, C., & Suzuki, K. (2013). Catalytic oxidation of VOCs over Al- and Fe-pillared montmorillonite. Applied Clay Science, 77-78, 56-60. doi:10.1016/j.clay.2013.02.027 | es_ES |
dc.description.references | Tian, W., Fan, X., Yang, H., & Zhang, X. (2010). Preparation of MnOx/TiO2 composites and their properties for catalytic oxidation of chlorobenzene. Journal of Hazardous Materials, 177(1-3), 887-891. doi:10.1016/j.jhazmat.2009.12.116 | es_ES |
dc.description.references | Blanch-Raga, N., Palomares, A. E., Martínez-Triguero, J., Puche, M., Fetter, G., & Bosch, P. (2014). The oxidation of trichloroethylene over different mixed oxides derived from hydrotalcites. Applied Catalysis B: Environmental, 160-161, 129-134. doi:10.1016/j.apcatb.2014.05.014 | es_ES |
dc.description.references | Taralunga, M., Mijoin, J., & Magnoux, P. (2006). Catalytic destruction of 1,2-dichlorobenzene over zeolites. Catalysis Communications, 7(3), 115-121. doi:10.1016/j.catcom.2005.09.006 | es_ES |
dc.description.references | Romero-Sáez, M., Divakar, D., Aranzabal, A., González-Velasco, J. R., & González-Marcos, J. A. (2016). Catalytic oxidation of trichloroethylene over Fe-ZSM-5: Influence of the preparation method on the iron species and the catalytic behavior. Applied Catalysis B: Environmental, 180, 210-218. doi:10.1016/j.apcatb.2015.06.027 | es_ES |
dc.description.references | Blanch-Raga, N., Palomares, A. E., Martínez-Triguero, J., & Valencia, S. (2016). Cu and Co modified beta zeolite catalysts for the trichloroethylene oxidation. Applied Catalysis B: Environmental, 187, 90-97. doi:10.1016/j.apcatb.2016.01.029 | es_ES |
dc.description.references | Cucciniello, R., Proto, A., Rossi, F., & Motta, O. (2013). Mayenite based supports for atmospheric NOx sampling. Atmospheric Environment, 79, 666-671. doi:10.1016/j.atmosenv.2013.07.065 | es_ES |
dc.description.references | Cucciniello, R., Intiso, A., Castiglione, S., Genga, A., Proto, A., & Rossi, F. (2017). Total oxidation of trichloroethylene over mayenite (Ca12Al14O33) catalyst. Applied Catalysis B: Environmental, 204, 167-172. doi:10.1016/j.apcatb.2016.11.035 | es_ES |
dc.description.references | Intiso, A., Martinez-Triguero, J., Cucciniello, R., Proto, A., Palomares, A. E., & Rossi, F. (2019). A Novel Synthetic Route to Prepare High Surface Area Mayenite Catalyst for TCE Oxidation. Catalysts, 9(1), 27. doi:10.3390/catal9010027 | es_ES |
dc.description.references | Intiso, A., Martinez-Triguero, J., Cucciniello, R., Rossi, F., & Palomares, A. E. (2019). Influence of the synthesis method on the catalytic activity of mayenite for the oxidation of gas-phase trichloroethylene. Scientific Reports, 9(1). doi:10.1038/s41598-018-36708-2 | es_ES |
dc.description.references | Proto, A., Cucciniello, R., Rossi, F., & Motta, O. (2013). Stable carbon isotope ratio in atmospheric CO2 collected by new diffusive devices. Environmental Science and Pollution Research, 21(4), 3182-3186. doi:10.1007/s11356-013-2369-3 | es_ES |
dc.description.references | Eufinger, J.-P., Schmidt, A., Lerch, M., & Janek, J. (2015). Novel anion conductors – conductivity, thermodynamic stability and hydration of anion-substituted mayenite-type cage compounds C12A7:X (X = O, OH, Cl, F, CN, S, N). Physical Chemistry Chemical Physics, 17(10), 6844-6857. doi:10.1039/c4cp05442c | es_ES |
dc.description.references | Schmidt, A., Lerch, M., Eufinger, J.-P., Janek, J., Tranca, I., Islam, M. M., … Hölzel, M. (2014). Chlorine ion mobility in Cl-mayenite (Ca12Al14O32Cl2): An investigation combining high-temperature neutron powder diffraction, impedance spectroscopy and quantum-chemical calculations. Solid State Ionics, 254, 48-58. doi:10.1016/j.ssi.2013.10.042 | es_ES |
dc.description.references | Teusner, M., De Souza, R. A., Krause, H., Ebbinghaus, S. G., Belghoul, B., & Martin, M. (2015). Oxygen Diffusion in Mayenite. The Journal of Physical Chemistry C, 119(18), 9721-9727. doi:10.1021/jp512863u | es_ES |
dc.description.references | Ruszak, M., Inger, M., Witkowski, S., Wilk, M., Kotarba, A., & Sojka, Z. (2008). Selective N2O Removal from the Process Gas of Nitric Acid Plants Over Ceramic 12CaO · 7Al2O3 Catalyst. Catalysis Letters, 126(1-2), 72-77. doi:10.1007/s10562-008-9619-x | es_ES |
dc.description.references | Proto, A., Cucciniello, R., Genga, A., & Capacchione, C. (2015). A study on the catalytic hydrogenation of aldehydes using mayenite as active support for palladium. Catalysis Communications, 68, 41-45. doi:10.1016/j.catcom.2015.04.028 | es_ES |
dc.description.references | Ye, T.-N., Li, J., Kitano, M., & Hosono, H. (2017). Unique nanocages of 12CaO·7Al2O3 boost heterolytic hydrogen activation and selective hydrogenation of heteroarenes over ruthenium catalyst. Green Chemistry, 19(3), 749-756. doi:10.1039/c6gc02782b | es_ES |
dc.description.references | Li, C., Hirabayashi, D., & Suzuki, K. (2009). A crucial role of O2− and O22− on mayenite structure for biomass tar steam reforming over Ni/Ca12Al14O33. Applied Catalysis B: Environmental, 88(3-4), 351-360. doi:10.1016/j.apcatb.2008.11.004 | es_ES |
dc.description.references | Li, H., Wang, S., Wang, X., Wang, Y., Tang, N., Pan, S., & Hu, J. (2017). FeCl3-modified Co–Ce oxides catalysts for mercury removal from coal-fired flue gas. Chemical Papers, 71(12), 2545-2555. doi:10.1007/s11696-017-0250-4 | es_ES |
dc.description.references | Grosvenor, A. P., Kobe, B. A., Biesinger, M. C., & McIntyre, N. S. (2004). Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surface and Interface Analysis, 36(12), 1564-1574. doi:10.1002/sia.1984 | es_ES |
dc.description.references | Mendez, M., Ciuraru, R., Gosselin, S., Batut, S., Visez, N., & Petitprez, D. (2013). Reactivity of chlorine radical with submicron palmitic acid particles: kinetic measurements and products identification. Atmospheric Chemistry and Physics Discussions, 13(6), 16925-16960. doi:10.5194/acpd-13-16925-2013 | es_ES |