Rossi, F., Cucciniello, R., Intiso, A., Proto, A., Motta, O., & Marchettini, N. (2015). Determination of the trichloroethylene diffusion coefficient in water. AIChE Journal, 61(10), 3511-3515. doi:10.1002/aic.14861
Ko, J. H., Musson, S., & Townsend, T. (2010). Destruction of trichloroethylene during hydration of calcium oxide. Journal of Hazardous Materials, 174(1-3), 876-879. doi:10.1016/j.jhazmat.2009.09.043
Ge, J., Huang, S., Han, I., & Jaffé, P. R. (2019). Degradation of tetra- and trichloroethylene under iron reducing conditions by Acidimicrobiaceae sp. A6. Environmental Pollution, 247, 248-255. doi:10.1016/j.envpol.2019.01.066
[+]
Rossi, F., Cucciniello, R., Intiso, A., Proto, A., Motta, O., & Marchettini, N. (2015). Determination of the trichloroethylene diffusion coefficient in water. AIChE Journal, 61(10), 3511-3515. doi:10.1002/aic.14861
Ko, J. H., Musson, S., & Townsend, T. (2010). Destruction of trichloroethylene during hydration of calcium oxide. Journal of Hazardous Materials, 174(1-3), 876-879. doi:10.1016/j.jhazmat.2009.09.043
Ge, J., Huang, S., Han, I., & Jaffé, P. R. (2019). Degradation of tetra- and trichloroethylene under iron reducing conditions by Acidimicrobiaceae sp. A6. Environmental Pollution, 247, 248-255. doi:10.1016/j.envpol.2019.01.066
Moccia, E., Intiso, A., Cicatelli, A., Proto, A., Guarino, F., Iannece, P., … Rossi, F. (2016). Use of Zea mays L. in phytoremediation of trichloroethylene. Environmental Science and Pollution Research, 24(12), 11053-11060. doi:10.1007/s11356-016-7570-8
Meyer, C. I., Borgna, A., Monzón, A., & Garetto, T. F. (2011). Kinetic study of trichloroethylene combustion on exchanged zeolites catalysts. Journal of Hazardous Materials, 190(1-3), 903-908. doi:10.1016/j.jhazmat.2011.04.007
Cucciniello, R., Proto, A., Rossi, F., Marchettini, N., & Motta, O. (2015). An improved method for BTEX extraction from charcoal. Analytical Methods, 7(11), 4811-4815. doi:10.1039/c5ay00828j
Intiso, A., Miele, Y., Marchettini, N., Proto, A., Sánchez-Domínguez, M., & Rossi, F. (2018). Enhanced solubility of trichloroethylene (TCE) by a poly-oxyethylene alcohol as green surfactant. Environmental Technology & Innovation, 12, 72-79. doi:10.1016/j.eti.2018.08.001
Garza‐Arévalo, J. I., Intiso, A., Proto, A., Rossi, F., & Sanchez‐Dominguez, M. (2019). Trichloroethylene solubilization using a series of commercial biodegradable ethoxylated fatty alcohol surfactants. Journal of Chemical Technology & Biotechnology, 94(11), 3523-3529. doi:10.1002/jctb.5965
Aranzabal, A., Pereda-Ayo, B., González-Marcos, M., González-Marcos, J., López-Fonseca, R., & González-Velasco, J. (2014). State of the art in catalytic oxidation of chlorinated volatile organic compounds. Chemical Papers, 68(9). doi:10.2478/s11696-013-0505-7
Li, D., Li, C., & Suzuki, K. (2013). Catalytic oxidation of VOCs over Al- and Fe-pillared montmorillonite. Applied Clay Science, 77-78, 56-60. doi:10.1016/j.clay.2013.02.027
Tian, W., Fan, X., Yang, H., & Zhang, X. (2010). Preparation of MnOx/TiO2 composites and their properties for catalytic oxidation of chlorobenzene. Journal of Hazardous Materials, 177(1-3), 887-891. doi:10.1016/j.jhazmat.2009.12.116
Blanch-Raga, N., Palomares, A. E., Martínez-Triguero, J., Puche, M., Fetter, G., & Bosch, P. (2014). The oxidation of trichloroethylene over different mixed oxides derived from hydrotalcites. Applied Catalysis B: Environmental, 160-161, 129-134. doi:10.1016/j.apcatb.2014.05.014
Taralunga, M., Mijoin, J., & Magnoux, P. (2006). Catalytic destruction of 1,2-dichlorobenzene over zeolites. Catalysis Communications, 7(3), 115-121. doi:10.1016/j.catcom.2005.09.006
Romero-Sáez, M., Divakar, D., Aranzabal, A., González-Velasco, J. R., & González-Marcos, J. A. (2016). Catalytic oxidation of trichloroethylene over Fe-ZSM-5: Influence of the preparation method on the iron species and the catalytic behavior. Applied Catalysis B: Environmental, 180, 210-218. doi:10.1016/j.apcatb.2015.06.027
Blanch-Raga, N., Palomares, A. E., Martínez-Triguero, J., & Valencia, S. (2016). Cu and Co modified beta zeolite catalysts for the trichloroethylene oxidation. Applied Catalysis B: Environmental, 187, 90-97. doi:10.1016/j.apcatb.2016.01.029
Cucciniello, R., Proto, A., Rossi, F., & Motta, O. (2013). Mayenite based supports for atmospheric NOx sampling. Atmospheric Environment, 79, 666-671. doi:10.1016/j.atmosenv.2013.07.065
Cucciniello, R., Intiso, A., Castiglione, S., Genga, A., Proto, A., & Rossi, F. (2017). Total oxidation of trichloroethylene over mayenite (Ca12Al14O33) catalyst. Applied Catalysis B: Environmental, 204, 167-172. doi:10.1016/j.apcatb.2016.11.035
Intiso, A., Martinez-Triguero, J., Cucciniello, R., Proto, A., Palomares, A. E., & Rossi, F. (2019). A Novel Synthetic Route to Prepare High Surface Area Mayenite Catalyst for TCE Oxidation. Catalysts, 9(1), 27. doi:10.3390/catal9010027
Intiso, A., Martinez-Triguero, J., Cucciniello, R., Rossi, F., & Palomares, A. E. (2019). Influence of the synthesis method on the catalytic activity of mayenite for the oxidation of gas-phase trichloroethylene. Scientific Reports, 9(1). doi:10.1038/s41598-018-36708-2
Proto, A., Cucciniello, R., Rossi, F., & Motta, O. (2013). Stable carbon isotope ratio in atmospheric CO2 collected by new diffusive devices. Environmental Science and Pollution Research, 21(4), 3182-3186. doi:10.1007/s11356-013-2369-3
Eufinger, J.-P., Schmidt, A., Lerch, M., & Janek, J. (2015). Novel anion conductors – conductivity, thermodynamic stability and hydration of anion-substituted mayenite-type cage compounds C12A7:X (X = O, OH, Cl, F, CN, S, N). Physical Chemistry Chemical Physics, 17(10), 6844-6857. doi:10.1039/c4cp05442c
Schmidt, A., Lerch, M., Eufinger, J.-P., Janek, J., Tranca, I., Islam, M. M., … Hölzel, M. (2014). Chlorine ion mobility in Cl-mayenite (Ca12Al14O32Cl2): An investigation combining high-temperature neutron powder diffraction, impedance spectroscopy and quantum-chemical calculations. Solid State Ionics, 254, 48-58. doi:10.1016/j.ssi.2013.10.042
Teusner, M., De Souza, R. A., Krause, H., Ebbinghaus, S. G., Belghoul, B., & Martin, M. (2015). Oxygen Diffusion in Mayenite. The Journal of Physical Chemistry C, 119(18), 9721-9727. doi:10.1021/jp512863u
Ruszak, M., Inger, M., Witkowski, S., Wilk, M., Kotarba, A., & Sojka, Z. (2008). Selective N2O Removal from the Process Gas of Nitric Acid Plants Over Ceramic 12CaO · 7Al2O3 Catalyst. Catalysis Letters, 126(1-2), 72-77. doi:10.1007/s10562-008-9619-x
Proto, A., Cucciniello, R., Genga, A., & Capacchione, C. (2015). A study on the catalytic hydrogenation of aldehydes using mayenite as active support for palladium. Catalysis Communications, 68, 41-45. doi:10.1016/j.catcom.2015.04.028
Ye, T.-N., Li, J., Kitano, M., & Hosono, H. (2017). Unique nanocages of 12CaO·7Al2O3 boost heterolytic hydrogen activation and selective hydrogenation of heteroarenes over ruthenium catalyst. Green Chemistry, 19(3), 749-756. doi:10.1039/c6gc02782b
Li, C., Hirabayashi, D., & Suzuki, K. (2009). A crucial role of O2− and O22− on mayenite structure for biomass tar steam reforming over Ni/Ca12Al14O33. Applied Catalysis B: Environmental, 88(3-4), 351-360. doi:10.1016/j.apcatb.2008.11.004
Li, H., Wang, S., Wang, X., Wang, Y., Tang, N., Pan, S., & Hu, J. (2017). FeCl3-modified Co–Ce oxides catalysts for mercury removal from coal-fired flue gas. Chemical Papers, 71(12), 2545-2555. doi:10.1007/s11696-017-0250-4
Grosvenor, A. P., Kobe, B. A., Biesinger, M. C., & McIntyre, N. S. (2004). Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surface and Interface Analysis, 36(12), 1564-1574. doi:10.1002/sia.1984
Mendez, M., Ciuraru, R., Gosselin, S., Batut, S., Visez, N., & Petitprez, D. (2013). Reactivity of chlorine radical with submicron palmitic acid particles: kinetic measurements and products identification. Atmospheric Chemistry and Physics Discussions, 13(6), 16925-16960. doi:10.5194/acpd-13-16925-2013
[-]