- -

Standalone Photovoltaic Direct Pumping in Urban Water Pressurized Networks with Energy Storage in Tanks or Batteries

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Standalone Photovoltaic Direct Pumping in Urban Water Pressurized Networks with Energy Storage in Tanks or Batteries

Mostrar el registro completo del ítem

Pardo, MA.; Cobacho Jordán, R.; Bañón, L. (2020). Standalone Photovoltaic Direct Pumping in Urban Water Pressurized Networks with Energy Storage in Tanks or Batteries. Sustainability. 12(2):1-20. https://doi.org/10.3390/su12020738

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/156495

Ficheros en el ítem

Metadatos del ítem

Título: Standalone Photovoltaic Direct Pumping in Urban Water Pressurized Networks with Energy Storage in Tanks or Batteries
Autor: Pardo, Miguel Angel Cobacho Jordán, Ricardo Bañón, Luis
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
[EN] Photovoltaic energy production is nowadays one of the hottest topics in the water industry as this green energy source is becoming more and more workable in countries like Spain, with high values of irradiance. In ...[+]
Palabras clave: Photovoltaic arrays , Tanks , Batteries , Energy audit
Derechos de uso: Reconocimiento (by)
Fuente:
Sustainability. (eissn: 2071-1050 )
DOI: 10.3390/su12020738
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/su12020738
Código del Proyecto:
info:eu-repo/grantAgreement/UA//GRE-16-08/
Agradecimientos:
This work was supported by the research project "GESAEN" through the 2016 call of the Vicerrectorado de Investigacion, Desarrollo e Innovacion from the University of Alicante, GRE-16-08.
Tipo: Artículo

References

Bijl, D. L., Bogaart, P. W., Kram, T., de Vries, B. J. M., & van Vuuren, D. P. (2016). Long-term water demand for electricity, industry and households. Environmental Science & Policy, 55, 75-86. doi:10.1016/j.envsci.2015.09.005

Breadsell, J. K., Byrne, J. J., & Morrison, G. M. (2019). Household Energy and Water Practices Change Post-Occupancy in an Australian Low-Carbon Development. Sustainability, 11(20), 5559. doi:10.3390/su11205559

Watson, K. J. (2015). Understanding the role of building management in the low-energy performance of passive sustainable design: Practices of natural ventilation in a UK office building. Indoor and Built Environment, 24(7), 999-1009. doi:10.1177/1420326x15601478 [+]
Bijl, D. L., Bogaart, P. W., Kram, T., de Vries, B. J. M., & van Vuuren, D. P. (2016). Long-term water demand for electricity, industry and households. Environmental Science & Policy, 55, 75-86. doi:10.1016/j.envsci.2015.09.005

Breadsell, J. K., Byrne, J. J., & Morrison, G. M. (2019). Household Energy and Water Practices Change Post-Occupancy in an Australian Low-Carbon Development. Sustainability, 11(20), 5559. doi:10.3390/su11205559

Watson, K. J. (2015). Understanding the role of building management in the low-energy performance of passive sustainable design: Practices of natural ventilation in a UK office building. Indoor and Built Environment, 24(7), 999-1009. doi:10.1177/1420326x15601478

Berry, S., & Davidson, K. (2015). Zero energy homes – Are they economically viable? Energy Policy, 85, 12-21. doi:10.1016/j.enpol.2015.05.009

Wittenberg, I., & Matthies, E. (2016). Solar policy and practice in Germany: How do residential households with solar panels use electricity? Energy Research & Social Science, 21, 199-211. doi:10.1016/j.erss.2016.07.008

Alghamdi, A., Haider, H., Hewage, K., & Sadiq, R. (2019). Inter-University Sustainability Benchmarking for Canadian Higher Education Institutions: Water, Energy, and Carbon Flows for Technical-Level Decision-Making. Sustainability, 11(9), 2599. doi:10.3390/su11092599

Hardy, L., Garrido, A., & Juana, L. (2012). Evaluation of Spain’s Water-Energy Nexus. International Journal of Water Resources Development, 28(1), 151-170. doi:10.1080/07900627.2012.642240

Cucchiella, F., D’Adamo, I., Gastaldi, M., & Stornelli, V. (2018). Solar Photovoltaic Panels Combined with Energy Storage in a Residential Building: An Economic Analysis. Sustainability, 10(9), 3117. doi:10.3390/su10093117

Zsiborács, H., Hegedűsné Baranyai, N., Vincze, A., Háber, I., & Pintér, G. (2018). Economic and Technical Aspects of Flexible Storage Photovoltaic Systems in Europe. Energies, 11(6), 1445. doi:10.3390/en11061445

Roncero-Sánchez, P., Parreño Torres, A., & Vázquez, J. (2018). Control Scheme of a Concentration Photovoltaic Plant with a Hybrid Energy Storage System Connected to the Grid. Energies, 11(2), 301. doi:10.3390/en11020301

Chen, J., Li, J., Zhang, Y., Bao, G., Ge, X., & Li, P. (2018). A Hierarchical Optimal Operation Strategy of Hybrid Energy Storage System in Distribution Networks with High Photovoltaic Penetration. Energies, 11(2), 389. doi:10.3390/en11020389

Reca, J., Torrente, C., López-Luque, R., & Martínez, J. (2016). Feasibility analysis of a standalone direct pumping photovoltaic system for irrigation in Mediterranean greenhouses. Renewable Energy, 85, 1143-1154. doi:10.1016/j.renene.2015.07.056

Senol, R. (2012). An analysis of solar energy and irrigation systems in Turkey. Energy Policy, 47, 478-486. doi:10.1016/j.enpol.2012.05.049

Tarjuelo, J. M., Rodriguez-Diaz, J. A., Abadía, R., Camacho, E., Rocamora, C., & Moreno, M. A. (2015). Efficient water and energy use in irrigation modernization: Lessons from Spanish case studies. Agricultural Water Management, 162, 67-77. doi:10.1016/j.agwat.2015.08.009

Chandel, S. S., Nagaraju Naik, M., & Chandel, R. (2015). Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies. Renewable and Sustainable Energy Reviews, 49, 1084-1099. doi:10.1016/j.rser.2015.04.083

Córcoles, J., Gonzalez Perea, R., Izquiel, A., & Moreno, M. (2019). Decision Support System Tool to Reduce the Energy Consumption of Water Abstraction from Aquifers for Irrigation. Water, 11(2), 323. doi:10.3390/w11020323

Betka, A., & Attali, A. (2010). Optimization of a photovoltaic pumping system based on the optimal control theory. Solar Energy, 84(7), 1273-1283. doi:10.1016/j.solener.2010.04.004

Elkholy, M. M., & Fathy, A. (2016). Optimization of a PV fed water pumping system without storage based on teaching-learning-based optimization algorithm and artificial neural network. Solar Energy, 139, 199-212. doi:10.1016/j.solener.2016.09.022

Narvarte, L., Fernández-Ramos, J., Martínez-Moreno, F., Carrasco, L. M., Almeida, R. H., & Carrêlo, I. B. (2018). Solutions for adapting photovoltaics to large power irrigation systems for agriculture. Sustainable Energy Technologies and Assessments, 29, 119-130. doi:10.1016/j.seta.2018.07.004

Mohanty, A., Ray, P. K., Viswavandya, M., Mohanty, S., & Mohanty, P. P. (2018). Experimental analysis of a standalone solar photo voltaic cell for improved power quality. Optik, 171, 876-885. doi:10.1016/j.ijleo.2018.06.139

Mérida García, A., Fernández García, I., Camacho Poyato, E., Montesinos Barrios, P., & Rodríguez Díaz, J. A. (2018). Coupling irrigation scheduling with solar energy production in a smart irrigation management system. Journal of Cleaner Production, 175, 670-682. doi:10.1016/j.jclepro.2017.12.093

Pardo Picazo, M., Juárez, J., & García-Márquez, D. (2018). Energy Consumption Optimization in Irrigation Networks Supplied by a Standalone Direct Pumping Photovoltaic System. Sustainability, 10(11), 4203. doi:10.3390/su10114203

González Perea, R., Mérida García, A., Fernández García, I., Camacho Poyato, E., Montesinos, P., & Rodríguez Díaz, J. A. (2019). Middleware to Operate Smart Photovoltaic Irrigation Systems in Real Time. Water, 11(7), 1508. doi:10.3390/w11071508

Wetzel, T., & Borchers, S. (2014). Update of energy payback time and greenhouse gas emission data for crystalline silicon photovoltaic modules. Progress in Photovoltaics: Research and Applications, 23(10), 1429-1435. doi:10.1002/pip.2548

Kou, Q., Klein, S. A., & Beckman, W. A. (1998). A method for estimating the long-term performance of direct-coupled PV pumping systems. Solar Energy, 64(1-3), 33-40. doi:10.1016/s0038-092x(98)00049-8

Meah, K., Fletcher, S., & Ula, S. (2008). Solar photovoltaic water pumping for remote locations. Renewable and Sustainable Energy Reviews, 12(2), 472-487. doi:10.1016/j.rser.2006.10.008

Child, M., Haukkala, T., & Breyer, C. (2017). The Role of Solar Photovoltaics and Energy Storage Solutions in a 100% Renewable Energy System for Finland in 2050. Sustainability, 9(8), 1358. doi:10.3390/su9081358

Wong, J., Lim, Y. S., Tang, J. H., & Morris, E. (2014). Grid-connected photovoltaic system in Malaysia: A review on voltage issues. Renewable and Sustainable Energy Reviews, 29, 535-545. doi:10.1016/j.rser.2013.08.087

Arab, A. H., Chenlo, F., Mukadam, K., & Balenzategui, J. L. (1999). Performance of PV water pumping systems. Renewable Energy, 18(2), 191-204. doi:10.1016/s0960-1481(98)00780-0

Muhsen, D. H., Khatib, T., & Abdulabbas, T. E. (2018). Sizing of a standalone photovoltaic water pumping system using hybrid multi-criteria decision making methods. Solar Energy, 159, 1003-1015. doi:10.1016/j.solener.2017.11.044

Khatib, T., Ibrahim, I. A., & Mohamed, A. (2016). A review on sizing methodologies of photovoltaic array and storage battery in a standalone photovoltaic system. Energy Conversion and Management, 120, 430-448. doi:10.1016/j.enconman.2016.05.011

Li, C.-H., Zhu, X.-J., Cao, G.-Y., Sui, S., & Hu, M.-R. (2009). Dynamic modeling and sizing optimization of stand-alone photovoltaic power systems using hybrid energy storage technology. Renewable Energy, 34(3), 815-826. doi:10.1016/j.renene.2008.04.018

Ru, Y., Kleissl, J., & Martinez, S. (2013). Storage Size Determination for Grid-Connected Photovoltaic Systems. IEEE Transactions on Sustainable Energy, 4(1), 68-81. doi:10.1109/tste.2012.2199339

Narvarte, L., Almeida, R. H., Carrêlo, I. B., Rodríguez, L., Carrasco, L. M., & Martinez-Moreno, F. (2019). On the number of PV modules in series for large-power irrigation systems. Energy Conversion and Management, 186, 516-525. doi:10.1016/j.enconman.2019.03.001

Yu, C., Khoo, Y., Chai, J., Han, S., & Yao, J. (2019). Optimal Orientation and Tilt Angle for Maximizing in-Plane Solar Irradiation for PV Applications in Japan. Sustainability, 11(7), 2016. doi:10.3390/su11072016

Hailu, & Fung. (2019). Optimum Tilt Angle and Orientation of Photovoltaic Thermal System for Application in Greater Toronto Area, Canada. Sustainability, 11(22), 6443. doi:10.3390/su11226443

Mérida García, A., Gallagher, J., McNabola, A., Camacho Poyato, E., Montesinos Barrios, P., & Rodríguez Díaz, J. A. (2019). Comparing the environmental and economic impacts of on- or off-grid solar photovoltaics with traditional energy sources for rural irrigation systems. Renewable Energy, 140, 895-904. doi:10.1016/j.renene.2019.03.122

Seme, S., Lukač, N., Štumberger, B., & Hadžiselimović, M. (2017). Power quality experimental analysis of grid-connected photovoltaic systems in urban distribution networks. Energy, 139, 1261-1266. doi:10.1016/j.energy.2017.05.088

Sugihara, H., Yokoyama, K., Saeki, O., Tsuji, K., & Funaki, T. (2013). Economic and Efficient Voltage Management Using Customer-Owned Energy Storage Systems in a Distribution Network With High Penetration of Photovoltaic Systems. IEEE Transactions on Power Systems, 28(1), 102-111. doi:10.1109/tpwrs.2012.2196529

Pardo, M. Á., Manzano, J., Valdes-Abellan, J., & Cobacho, R. (2019). Standalone direct pumping photovoltaic system or energy storage in batteries for supplying irrigation networks. Cost analysis. Science of The Total Environment, 673, 821-830. doi:10.1016/j.scitotenv.2019.04.050

Batchabani, E., & Fuamba, M. (2014). Optimal Tank Design in Water Distribution Networks: Review of Literature and Perspectives. Journal of Water Resources Planning and Management, 140(2), 136-145. doi:10.1061/(asce)wr.1943-5452.0000256

Kurek, W., & Ostfeld, A. (2013). Multi-objective optimization of water quality, pumps operation, and storage sizing of water distribution systems. Journal of Environmental Management, 115, 189-197. doi:10.1016/j.jenvman.2012.11.030

Sarbu, I. (2016). A Study of Energy Optimisation of Urban Water Distribution Systems Using Potential Elements. Water, 8(12), 593. doi:10.3390/w8120593

Gómez, E., Cabrera, E., Balaguer, M., & Soriano, J. (2015). Direct and Indirect Water Supply: An Energy Assessment. Procedia Engineering, 119, 1088-1097. doi:10.1016/j.proeng.2015.08.941

Hamidat, A., & Benyoucef, B. (2009). Systematic procedures for sizing photovoltaic pumping system, using water tank storage. Energy Policy, 37(4), 1489-1501. doi:10.1016/j.enpol.2008.12.014

Ould Amrouche, S., Rekioua, D., Rekioua, T., & Bacha, S. (2016). Overview of energy storage in renewable energy systems. International Journal of Hydrogen Energy, 41(45), 20914-20927. doi:10.1016/j.ijhydene.2016.06.243

Üçtuğ, F. G., & Azapagic, A. (2018). Environmental impacts of small-scale hybrid energy systems: Coupling solar photovoltaics and lithium-ion batteries. Science of The Total Environment, 643, 1579-1589. doi:10.1016/j.scitotenv.2018.06.290

Rydh, C. J., & Sandén, B. A. (2005). Energy analysis of batteries in photovoltaic systems. Part I: Performance and energy requirements. Energy Conversion and Management, 46(11-12), 1957-1979. doi:10.1016/j.enconman.2004.10.003

Todde, G., Murgia, L., Deligios, P. A., Hogan, R., Carrelo, I., Moreira, M., … Narvarte, L. (2019). Energy and environmental performances of hybrid photovoltaic irrigation systems in Mediterranean intensive and super-intensive olive orchards. Science of The Total Environment, 651, 2514-2523. doi:10.1016/j.scitotenv.2018.10.175

Ghorbanian, V., Karney, B., & Guo, Y. (2016). Pressure Standards in Water Distribution Systems: Reflection on Current Practice with Consideration of Some Unresolved Issues. Journal of Water Resources Planning and Management, 142(8), 04016023. doi:10.1061/(asce)wr.1943-5452.0000665

Giustolisi, O., Savic, D., & Kapelan, Z. (2008). Pressure-Driven Demand and Leakage Simulation for Water Distribution Networks. Journal of Hydraulic Engineering, 134(5), 626-635. doi:10.1061/(asce)0733-9429(2008)134:5(626)

Cabrera, E., Pardo, M. A., Cabrera, E., & Arregui, F. J. (2012). Tap Water Costs and Service Sustainability, a Close Relationship. Water Resources Management, 27(1), 239-253. doi:10.1007/s11269-012-0181-3

Vindel, J. M., Polo, J., & Zarzalejo, L. F. (2015). Modeling monthly mean variation of the solar global irradiation. Journal of Atmospheric and Solar-Terrestrial Physics, 122, 108-118. doi:10.1016/j.jastp.2014.11.008

Balling, R. C., Gober, P., & Jones, N. (2008). Sensitivity of residential water consumption to variations in climate: An intraurban analysis of Phoenix, Arizona. Water Resources Research, 44(10). doi:10.1029/2007wr006722

Hoekstra, A. Y., Mekonnen, M. M., Chapagain, A. K., Mathews, R. E., & Richter, B. D. (2012). Global Monthly Water Scarcity: Blue Water Footprints versus Blue Water Availability. PLoS ONE, 7(2), e32688. doi:10.1371/journal.pone.0032688

Kleiner, Y., & Rajani, B. (2001). Comprehensive review of structural deterioration of water mains: statistical models. Urban Water, 3(3), 131-150. doi:10.1016/s1462-0758(01)00033-4

Cabrera, E., Pardo, M. A., Cobacho, R., & Cabrera, E. (2010). Energy Audit of Water Networks. Journal of Water Resources Planning and Management, 136(6), 669-677. doi:10.1061/(asce)wr.1943-5452.0000077

Ebara Grupos de Presión Automáticos http://www.ebara.es

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem