- -

A virtual versus an augmented reality cooking task based-tools: a behavioral and physiological study on the assessment of executive functions.

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A virtual versus an augmented reality cooking task based-tools: a behavioral and physiological study on the assessment of executive functions.

Show simple item record

Files in this item

dc.contributor.author CHICCHI-GIGLIOLI, IRENE ALICE es_ES
dc.contributor.author Bermejo Vidal, Cristina es_ES
dc.contributor.author Alcañiz Raya, Mariano Luis es_ES
dc.date.accessioned 2020-12-05T04:33:13Z
dc.date.available 2020-12-05T04:33:13Z
dc.date.issued 2019-11-14 es_ES
dc.identifier.uri http://hdl.handle.net/10251/156524
dc.description.abstract [EN] Virtual reality (VR) and augmented reality (AR) are two novel graphics immersive techniques (GIT) that, in the last decade, have been attracting the attention of many researchers, especially in psychological research. VR can provide 3D real-life synthetic environments in which controllers allow human interaction. AR overlays synthetic elements to the real world and the human gaze to target allow hand gesture to act with synthetic elements. Both techniques are providing more ecologically environments than traditional methods, and most of the previous researches, on one side, have more focused on the use of VR for treatment and assessment showing positive effectiveness results. On the other, AR has been proving for the treatment of specific disorders but there are no studies that investigated the feasibility and effectiveness of augmented reality in the neuropsychological assessment. Starting from these premises, the present study aimed to compare the performance and sense of presence using both techniques during an ecological task, such as cooking. The study included 50 cognitively healthy subjects. The cooking task consisted of 4 levels that increased in difficulty. As the level increased, additional activities appeared. The order of presentation of each exposure condition (AR and VR) was counterbalanced for each participant. The virtual reality-cooking task has been performed through ¿HTC/VIVE¿ and augmented reality through ¿Microsoft HoloLens¿.¿Furthermore, the study recorded and compared the psychophysiological changes (heart rate and skin conductance response) during the cooking task in both conditions. To measure the sense of presence occurring during the two exposure conditions, subjects completed the SUSQ and the ITC-SOPI immediately after each condition. The behavioral results showed that times are always lower in VR than in AR, increasing constantly in accordance with the difficulty of the tasks. Regarding physiological responses, the findings showed that AR condition produced more individual excitement and activation than VR. Finally, VR was able to produce higher levels of sense of presence than AR condition. The overall results support that VR currently represents the GIT with greater usability and feasibility compared to AR, probably due to the differences in the human-computer interaction between the two techniques. es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Psychology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Augmented reality es_ES
dc.subject Behavioral performance es_ES
dc.subject Ecological validity es_ES
dc.subject Executive functions es_ES
dc.subject Physiological signals es_ES
dc.subject Virtual reality es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.title A virtual versus an augmented reality cooking task based-tools: a behavioral and physiological study on the assessment of executive functions. es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fpsyg.2019.02529 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica es_ES
dc.description.bibliographicCitation Chicchi-Giglioli, IA.; Bermejo Vidal, C.; Alcañiz Raya, ML. (2019). A virtual versus an augmented reality cooking task based-tools: a behavioral and physiological study on the assessment of executive functions. Frontiers in Psychology. 1-12. https://doi.org/10.3389/fpsyg.2019.02529 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fpsyg.2019.02529 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.identifier.eissn 1664-1078 es_ES
dc.identifier.pmid 31798497 es_ES
dc.identifier.pmcid PMC6868091 es_ES
dc.relation.pasarela S\396649 es_ES
dc.description.references Barratt, E. S. (1959). Anxiety and Impulsiveness Related to Psychomotor Efficiency. Perceptual and Motor Skills, 9(3), 191-198. doi:10.2466/pms.1959.9.3.191 es_ES
dc.description.references Bohil, C. J., Alicea, B., & Biocca, F. A. (2011). Virtual reality in neuroscience research and therapy. Nature Reviews Neuroscience, 12(12), 752-762. doi:10.1038/nrn3122 es_ES
dc.description.references Chaytor, N., & Schmitter-Edgecombe, M. (2003). The Ecological Validity of Neuropsychological Tests: A Review of the Literature on Everyday Cognitive Skills. Neuropsychology Review, 13(4), 181-197. doi:10.1023/b:nerv.0000009483.91468.fb es_ES
dc.description.references CHAYTOR, N., SCHMITTEREDGECOMBE, M., & BURR, R. (2006). Improving the ecological validity of executive functioning assessment. Archives of Clinical Neuropsychology, 21(3), 217-227. doi:10.1016/j.acn.2005.12.002 es_ES
dc.description.references Chicchi Giglioli, I. A., Pallavicini, F., Pedroli, E., Serino, S., & Riva, G. (2015). Augmented Reality: A Brand New Challenge for the Assessment and Treatment of Psychological Disorders. Computational and Mathematical Methods in Medicine, 2015, 1-12. doi:10.1155/2015/862942 es_ES
dc.description.references Cipresso, P., Albani, G., Serino, S., Pedroli, E., Pallavicini, F., Mauro, A., & Riva, G. (2014). Virtual multiple errands test (VMET): a virtual reality-based tool to detect early executive functions deficit in Parkinson’s disease. Frontiers in Behavioral Neuroscience, 8. doi:10.3389/fnbeh.2014.00405 es_ES
dc.description.references Cipresso, P., Giglioli, I. A. C., Raya, M. A., & Riva, G. (2018). The Past, Present, and Future of Virtual and Augmented Reality Research: A Network and Cluster Analysis of the Literature. Frontiers in Psychology, 9. doi:10.3389/fpsyg.2018.02086 es_ES
dc.description.references De Leeuw, J. R. (2014). jsPsych: A JavaScript library for creating behavioral experiments in a Web browser. Behavior Research Methods, 47(1), 1-12. doi:10.3758/s13428-014-0458-y es_ES
dc.description.references Iriarte, Y., Diaz-Orueta, U., Cueto, E., Irazustabarrena, P., Banterla, F., & Climent, G. (2012). AULA—Advanced Virtual Reality Tool for the Assessment of Attention. Journal of Attention Disorders, 20(6), 542-568. doi:10.1177/1087054712465335 es_ES
dc.description.references Díaz-Orueta, U., Garcia-López, C., Crespo-Eguílaz, N., Sánchez-Carpintero, R., Climent, G., & Narbona, J. (2013). AULA virtual reality test as an attention measure: Convergent validity with Conners’ Continuous Performance Test. Child Neuropsychology, 20(3), 328-342. doi:10.1080/09297049.2013.792332 es_ES
dc.description.references Dunkin, B., Adrales, G. L., Apelgren, K., & Mellinger, J. D. (2006). Surgical simulation: a current review. Surgical Endoscopy, 21(3), 357-366. doi:10.1007/s00464-006-9072-0 es_ES
dc.description.references Elkind, J. S., Rubin, E., Rosenthal, S., Skoff, B., & Prather, P. (2001). A Simulated Reality Scenario Compared with the Computerized Wisconsin Card Sorting Test: An Analysis of Preliminary Results. CyberPsychology & Behavior, 4(4), 489-496. doi:10.1089/109493101750527042 es_ES
dc.description.references Fillmore, M. T., Rush, C. R., & Hays, L. (2006). Acute effects of cocaine in two models of inhibitory control: implications of non-linear dose effects. Addiction, 101(9), 1323-1332. doi:10.1111/j.1360-0443.2006.01522.x es_ES
dc.description.references Fleming, T. M., Bavin, L., Stasiak, K., Hermansson-Webb, E., Merry, S. N., Cheek, C., … Hetrick, S. (2017). Serious Games and Gamification for Mental Health: Current Status and Promising Directions. Frontiers in Psychiatry, 7. doi:10.3389/fpsyt.2016.00215 es_ES
dc.description.references Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). «Mini-mental state». Journal of Psychiatric Research, 12(3), 189-198. doi:10.1016/0022-3956(75)90026-6 es_ES
dc.description.references Freeman, D., Reeve, S., Robinson, A., Ehlers, A., Clark, D., Spanlang, B., & Slater, M. (2017). Virtual reality in the assessment, understanding, and treatment of mental health disorders. Psychological Medicine, 47(14), 2393-2400. doi:10.1017/s003329171700040x es_ES
dc.description.references Germine, L., Nakayama, K., Duchaine, B. C., Chabris, C. F., Chatterjee, G., & Wilmer, J. B. (2012). Is the Web as good as the lab? Comparable performance from Web and lab in cognitive/perceptual experiments. Psychonomic Bulletin & Review, 19(5), 847-857. doi:10.3758/s13423-012-0296-9 es_ES
dc.description.references Germine, L., Reinecke, K., & Chaytor, N. S. (2019). Digital neuropsychology: Challenges and opportunities at the intersection of science and software. The Clinical Neuropsychologist, 33(2), 271-286. doi:10.1080/13854046.2018.1535662 es_ES
dc.description.references Gregg, L., & Tarrier, N. (2007). Virtual reality in mental health. Social Psychiatry and Psychiatric Epidemiology, 42(5), 343-354. doi:10.1007/s00127-007-0173-4 es_ES
dc.description.references Henry, M., Joyal, C. C., & Nolin, P. (2012). Development and initial assessment of a new paradigm for assessing cognitive and motor inhibition: The bimodal virtual-reality Stroop. Journal of Neuroscience Methods, 210(2), 125-131. doi:10.1016/j.jneumeth.2012.07.025 es_ES
dc.description.references Jensen, L., & Konradsen, F. (2017). A review of the use of virtual reality head-mounted displays in education and training. Education and Information Technologies, 23(4), 1515-1529. doi:10.1007/s10639-017-9676-0 es_ES
dc.description.references Juan, M. C., & Pérez, D. (2010). Using augmented and virtual reality for the development of acrophobic scenarios. Comparison of the levels of presence and anxiety. Computers & Graphics, 34(6), 756-766. doi:10.1016/j.cag.2010.08.001 es_ES
dc.description.references Khademi, M., Hondori, H. M., Dodakian, L., Cramer, S., & Lopes, C. V. (2013). Comparing “pick and place” task in spatial Augmented Reality versus non-immersive Virtual Reality for rehabilitation setting. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). doi:10.1109/embc.2013.6610575 es_ES
dc.description.references Krichenbauer, M., Yamamoto, G., Taketom, T., Sandor, C., & Kato, H. (2018). Augmented Reality versus Virtual Reality for 3D Object Manipulation. IEEE Transactions on Visualization and Computer Graphics, 24(2), 1038-1048. doi:10.1109/tvcg.2017.2658570 es_ES
dc.description.references Ku, J., Cho, W., Kim, J.-J., Peled, A., Wiederhold, B. K., Wiederhold, M. D., … Kim, S. I. (2003). A Virtual Environment for Investigating Schizophrenic Patients’ Characteristics: Assessment of Cognitive and Navigation Ability. CyberPsychology & Behavior, 6(4), 397-404. doi:10.1089/109493103322278781 es_ES
dc.description.references Lessiter, J., Freeman, J., Keogh, E., & Davidoff, J. (2001). A Cross-Media Presence Questionnaire: The ITC-Sense of Presence Inventory. Presence: Teleoperators and Virtual Environments, 10(3), 282-297. doi:10.1162/105474601300343612 es_ES
dc.description.references Martin, M. M., & Rubin, R. B. (1995). A New Measure of Cognitive Flexibility. Psychological Reports, 76(2), 623-626. doi:10.2466/pr0.1995.76.2.623 es_ES
dc.description.references McMahan, R. P., Alon, A. J. D., Lazem, S., Beaton, R. J., Machaj, D., Schaefer, M., … Bowman, D. A. (2010). Evaluating natural interaction techniques in video games. 2010 IEEE Symposium on 3D User Interfaces (3DUI). doi:10.1109/3dui.2010.5444727 es_ES
dc.description.references McMahan, R. P., Bowman, D. A., Zielinski, D. J., & Brady, R. B. (2012). Evaluating Display Fidelity and Interaction Fidelity in a Virtual Reality Game. IEEE Transactions on Visualization and Computer Graphics, 18(4), 626-633. doi:10.1109/tvcg.2012.43 es_ES
dc.description.references Miller, M. A., & Fillmore, M. T. (2010). The effect of image complexity on attentional bias towards alcohol-related images in adult drinkers. Addiction, 105(5), 883-890. doi:10.1111/j.1360-0443.2009.02860.x es_ES
dc.description.references Neguț, A., Matu, S.-A., Sava, F. A., & David, D. (2016). Virtual reality measures in neuropsychological assessment: a meta-analytic review. The Clinical Neuropsychologist, 30(2), 165-184. doi:10.1080/13854046.2016.1144793 es_ES
dc.description.references Martínez-Loredo, V., Fernández-Hermida, J. R., Fernández-Artamendi, S., Carballo, J. L., & García-Rodríguez, O. (2015). Spanish adaptation and validation of the Barratt Impulsiveness Scale for early adolescents (BIS-11-A). International Journal of Clinical and Health Psychology, 15(3), 274-282. doi:10.1016/j.ijchp.2015.07.002 es_ES
dc.description.references Parsons, T. D. (2015). Virtual Reality for Enhanced Ecological Validity and Experimental Control in the Clinical, Affective and Social Neurosciences. Frontiers in Human Neuroscience, 9. doi:10.3389/fnhum.2015.00660 es_ES
dc.description.references Ming-Zher Poh, Swenson, N. C., & Picard, R. W. (2010). A Wearable Sensor for Unobtrusive, Long-Term Assessment of Electrodermal Activity. IEEE Transactions on Biomedical Engineering, 57(5), 1243-1252. doi:10.1109/tbme.2009.2038487 es_ES
dc.description.references PUGNETTI, L., MENDOZZI, L., ATTREE, E. A., BARBIERI, E., BROOKS, B. M., CAZZULLO, C. L., … Psychol, C. (1998). Probing Memory and Executive Functions with Virtual Reality: Past and Present Studies. CyberPsychology & Behavior, 1(2), 151-161. doi:10.1089/cpb.1998.1.151 es_ES
dc.description.references Ragan, E. D. (2010). The Effects of Higher Levels of Immersion on Procedure Memorization Performance and Implications for Educational Virtual Environments. Presence: Teleoperators and Virtual Environments, 19(6), 527-543. doi:10.1162/pres_a_00016 es_ES
dc.description.references Ragan, E. D., Kopper, R., Schuchardt, P., & Bowman, D. A. (2013). Studying the Effects of Stereo, Head Tracking, and Field of Regard on a Small-Scale Spatial Judgment Task. IEEE Transactions on Visualization and Computer Graphics, 19(5), 886-896. doi:10.1109/tvcg.2012.163 es_ES
dc.description.references Rand, D., Katz, N., & (Tamar) Weiss, P. L. (2007). Evaluation of virtual shopping in the VMall: Comparison of post-stroke participants to healthy control groups. Disability and Rehabilitation, 29(22), 1710-1719. doi:10.1080/09638280601107450 es_ES
dc.description.references Rand, D., Rukan, S. B.-A., (Tamar) Weiss, P. L., & Katz, N. (2009). Validation of the Virtual MET as an assessment tool for executive functions. Neuropsychological Rehabilitation, 19(4), 583-602. doi:10.1080/09602010802469074 es_ES
dc.description.references Reimers, S., & Stewart, N. (2014). Presentation and response timing accuracy in Adobe Flash and HTML5/JavaScript Web experiments. Behavior Research Methods, 47(2), 309-327. doi:10.3758/s13428-014-0471-1 es_ES
dc.description.references Rizzo, A. A., Buckwalter, J. G., Bowerly, T., Van Der Zaag, C., Humphrey, L., Neumann, U., … Sisemore, D. (2000). The Virtual Classroom: A Virtual Reality Environment for the Assessment and Rehabilitation of Attention Deficits. CyberPsychology & Behavior, 3(3), 483-499. doi:10.1089/10949310050078940 es_ES
dc.description.references Rizzo, A. A., Schultheis, M., Kerns, K. A., & Mateer, C. (2004). Analysis of assets for virtual reality applications in neuropsychology. Neuropsychological Rehabilitation, 14(1-2), 207-239. doi:10.1080/09602010343000183 es_ES
dc.description.references Rizzo, A. A., Bowerly, T., Buckwalter, J. G., Klimchuk, D., Mitura, R., & Parsons, T. D. (2009). A Virtual Reality Scenario for All Seasons:The Virtual Classroom. CNS Spectrums, 11(1), 35-44. doi:10.1017/s1092852900024196 es_ES
dc.description.references Saposnik, G., Mamdani, M., Bayley, M., Thorpe, K. E., Hall, J., Cohen, L. G., & Teasell, R. (2010). Effectiveness of Virtual Reality Exercises in STrokeRehabilitation(EVREST): Rationale, Design, and Protocol of a Pilot Randomized Clinical Trial Assessing the Wii Gaming System. International Journal of Stroke, 5(1), 47-51. doi:10.1111/j.1747-4949.2009.00404.x es_ES
dc.description.references Seymour, N. E. (2007). VR to OR: A Review of the Evidence that Virtual Reality Simulation Improves Operating Room Performance. World Journal of Surgery, 32(2), 182-188. doi:10.1007/s00268-007-9307-9 es_ES
dc.description.references Sequeira, H., Hot, P., Silvert, L., & Delplanque, S. (2009). Electrical autonomic correlates of emotion. International Journal of Psychophysiology, 71(1), 50-56. doi:10.1016/j.ijpsycho.2008.07.009 es_ES
dc.description.references Slater, M. (2009). Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1535), 3549-3557. doi:10.1098/rstb.2009.0138 es_ES
dc.description.references Slater, M., & Steed, A. (2000). A Virtual Presence Counter. Presence: Teleoperators and Virtual Environments, 9(5), 413-434. doi:10.1162/105474600566925 es_ES
dc.description.references Suso-Ribera, C., Fernández-Álvarez, J., García-Palacios, A., Hoffman, H. G., Bretón-López, J., Baños, R. M., … Botella, C. (2019). Virtual Reality, Augmented Reality, and In Vivo Exposure Therapy: A Preliminary Comparison of Treatment Efficacy in Small Animal Phobia. Cyberpsychology, Behavior, and Social Networking, 22(1), 31-38. doi:10.1089/cyber.2017.0672 es_ES
dc.description.references Valmaggia, L. R., Latif, L., Kempton, M. J., & Rus-Calafell, M. (2016). Virtual reality in the psychological treatment for mental health problems: An systematic review of recent evidence. Psychiatry Research, 236, 189-195. doi:10.1016/j.psychres.2016.01.015 es_ES


This item appears in the following Collection(s)

Show simple item record