- -

Pentachlorophenol Removal from Water by Soybean Peroxidase and Iron(II) Salts Concerted Action

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Pentachlorophenol Removal from Water by Soybean Peroxidase and Iron(II) Salts Concerted Action

Mostrar el registro completo del ítem

Tolardo, V.; García-Ballesteros, S.; Santos-Juanes Jordá, L.; Vercher Pérez, RF.; Amat Payá, AM.; Arqués Sanz, A.; Laurenti, E. (2019). Pentachlorophenol Removal from Water by Soybean Peroxidase and Iron(II) Salts Concerted Action. Water Air & Soil Pollution. 230(6):1-8. https://doi.org/10.1007/s11270-019-4189-7

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/157209

Ficheros en el ítem

Metadatos del ítem

Título: Pentachlorophenol Removal from Water by Soybean Peroxidase and Iron(II) Salts Concerted Action
Autor: Tolardo, V. García-Ballesteros, Sara Santos-Juanes Jordá, Lucas Vercher Pérez, Rosa Francisca Amat Payá, Ana María Arqués Sanz, Antonio Laurenti, E.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Textil y Papelera - Departament d'Enginyeria Tèxtil i Paperera
Fecha difusión:
Resumen:
[EN] Soybean peroxidase (SBP) has been employed for the treatment of aqueous solutions containing pentachlorophenol (PCP) in the presence of hydrogen peroxide at pH range 5-7. Reaction carried out with 1mg/L of PCP, 4mg/L ...[+]
Palabras clave: Soybean peroxidase , Fenton , Pentachlorophenol , Hydrogen peroxide , Wastewater , Iron
Derechos de uso: Reserva de todos los derechos
Fuente:
Water Air & Soil Pollution. (issn: 0049-6979 )
DOI: 10.1007/s11270-019-4189-7
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s11270-019-4189-7
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP7/269128/EU/Isolation, Characterization and screening of environmental applications of Bio-Organic substances obtained from urban biomasses (EnvironBOS)/
info:eu-repo/grantAgreement/MINECO//CTQ2015-69832-C4-4-R/ES/TECNOLOGIAS EFICIENTES PARA LA ELIMINACION DE CONTAMINANTES DE PREOCUPACION EMERGENTE, CONTENIDOS EN DIRECTIVA 2013%2F39%2FCE O DE RIESGO SIGNIFICATIVO SEGUN DIRECTIVA 2008%2F105%2FCE/
info:eu-repo/grantAgreement/EC/H2020/645551/EU/Enhancing water quality by developing novel materials for organic pollutant removal in tertiary water treatments/
info:eu-repo/grantAgreement/MINECO//BES-2013-066201/ES/BES-2013-066201/
Agradecimientos:
We want to acknowledge Davide Mainero from Acea Pinerolese for his collaboration in this research. The authors want to thank the financial support of the European Union (PIRSES-GA-2010-269128, EnvironBOS and Marie ...[+]
Tipo: Artículo

References

Babuponnusami, A., & Muthukumar, K. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering, 2(1), 557–572. https://doi.org/10.1016/j.jece.2013.10.011 .

Ballschmiter, K. (2003). Pattern and sources of naturally produced organohalogens in the marine environment: biogenic formation of organohalogens. Chemosphere, 52(2), 313–324. https://doi.org/10.1016/S0045-6535(03)00211-X .

Calza, P., Zacchigna, D., & Laurenti, E. (2016). Degradation of orange dyes and carbamazepine by soybean peroxidase immobilized on silica monoliths and titanium dioxide. Environmental Science and Pollution Research, 23(23), 23742–23749. https://doi.org/10.1007/s11356-016-7399-1 . [+]
Babuponnusami, A., & Muthukumar, K. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering, 2(1), 557–572. https://doi.org/10.1016/j.jece.2013.10.011 .

Ballschmiter, K. (2003). Pattern and sources of naturally produced organohalogens in the marine environment: biogenic formation of organohalogens. Chemosphere, 52(2), 313–324. https://doi.org/10.1016/S0045-6535(03)00211-X .

Calza, P., Zacchigna, D., & Laurenti, E. (2016). Degradation of orange dyes and carbamazepine by soybean peroxidase immobilized on silica monoliths and titanium dioxide. Environmental Science and Pollution Research, 23(23), 23742–23749. https://doi.org/10.1007/s11356-016-7399-1 .

Caza, N., Bewtra, J., Biswas, N., & Taylor, K. (1999). Removal of phenolic compounds from synthetic wastewater using soybean peroxidase. Water Research, 33(13), 3012–3018. https://doi.org/10.1016/S0043-1354(98)00525-9 .

Czaplicka, M. (2004). Sources and transformations of chlorophenols in the natural environment. Science of the Total Environment, 322(1–3), 21–39. https://doi.org/10.1016/j.scitotenv.2003.09.015 .

Donadelli, J. A., Carlos, L., Arques, A., & García Einschlag, F. S. (2018). Kinetic and mechanistic analysis of azo dyes decolorization by ZVI-assisted Fenton systems: pH-dependent shift in the contributions of reductive and oxidative transformation pathways. Applied Catalysis B: Environmental, 231, 51–61. https://doi.org/10.1016/j.apcatb.2018.02.057 .

Durán, N., & Esposito, E. (2000). Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Applied Catalysis B: Environmental, 28(2), 83–99. https://doi.org/10.1016/S0926-3373(00)00168-5 .

Essam, T., Amin, M. A., El Tayeb, O., Mattiasson, B., & Guieysse, B. (2007). Sequential photochemical–biological degradation of chlorophenols. Chemosphere, 66(11), 2201–2209. https://doi.org/10.1016/j.chemosphere.2006.08.036 .

Garcia-Peña, E. I., Zarate-Segura, P., Guerra-Blanco, P., Poznyak, T., & Chairez, I. (2012). Enhanced phenol and chlorinated phenols removal by combining ozonation and biodegradation. Water, Air, and Soil Pollution, 223(7), 4047–4064. https://doi.org/10.1007/s11270-012-1172-y .

Hoekstra, E. J., De Weerd, H., De Leer, E. W. B., & Brinkman, U. A. T. (1999). Natural formation of chlorinated phenols, dibenzo-p-dioxins, and dibenzofurans in soil of a Douglas fir forest. Environmental Science and Technology, 33(15), 2543–2549. https://doi.org/10.1021/es9900104 .

Karci, A. (2014). Degradation of chlorophenols and alkylphenol ethoxylates, two representative textile chemicals, in water by advanced oxidation processes: the state of the art on transformation products and toxicity. Chemosphere, 99, 1–18. https://doi.org/10.1016/j.chemosphere.2013.10.034 .

Li, Z. (2018). Health risk characterization of maximum legal exposures for persistent organic pollutant (POP) pesticides in residential soil: an analysis. Journal of Environmental Management, 205, 163–173. https://doi.org/10.1016/j.jenvman.2017.09.070 .

Marchis, T., Avetta, P., Bianco-Prevot, A., Fabbri, D., Viscardi, G., & Laurenti, E. (2011). Oxidative degradation of Remazol Turquoise Blue G 133 by soybean peroxidase. Journal of Inorganic Biochemistry, 105(2), 321–327. https://doi.org/10.1016/j.jinorgbio.2010.11.009 .

Marchis, T., Cerrato, G., Magnacca, G., Crocellà, V., & Laurenti, E. (2012). Immobilization of soybean peroxidase on aminopropyl glass beads: structural and kinetic studies. Biochemical Engineering Journal, 67, 28–34. https://doi.org/10.1016/j.bej.2012.05.002 .

Muñoz, M., de Pedro, Z. M., Casas, J. A., & Rodriguez, J. J. (2013). Chlorophenols breakdown by a sequential hydrodechlorination-oxidation treatment with a magnetic Pd-Fe/?-Al2O3 catalyst. Water Research, 47(9), 3070–3080. https://doi.org/10.1016/j.watres.2013.03.024 .

Naghdi, M., Taheran, M., Brar, S. K., Kermanshahi-pour, A., Verma, M., & Surampalli, R. Y. (2018). Removal of pharmaceutical compounds in water and wastewater using fungal oxidoreductase enzymes. Environmental Pollution. Elsevier. https://doi.org/10.1016/j.envpol.2017.11.060 .

Ngo, T. T., & Lenhoff, H. M. (1980). A sensitive and versatile chromogenic assay for peroxidase and peroxidase-coupled reactions. Analytical Biochemistry, 105(1), 389–397. https://doi.org/10.1016/0003-2697(80)90475-3 .

Olaniran, A. O., & Igbinosa, E. O. (2011). Chlorophenols and other related derivatives of environmental concern: properties, distribution and microbial degradation processes. Chemosphere, 83(10), 1297–1306. https://doi.org/10.1016/j.chemosphere.2011.04.009 .

Oller, I., Malato, S., & Sánchez-Pérez, J. A. (2011). Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Science of the Total Environment, 409(20), 4141–4166. https://doi.org/10.1016/j.scitotenv.2010.08.061 .

Passardi, F., Cosio, C., Penel, C., & Dunand, C. (2005, July 22). Peroxidases have more functions than a Swiss army knife. Plant Cell Reports. Springer-Verlag. https://doi.org/10.1007/s00299-005-0972-6 .

Pera-Titus, M., Garcı́a-Molina, V., Baños, M. A., Giménez, J., & Esplugas, S. (2004). Degradation of chlorophenols by means of advanced oxidation processes: a general review. Applied Catalysis B: Environmental, 47(4), 219–256. https://doi.org/10.1016/j.apcatb.2003.09.010 .

Qayyum, H., Maroof, H., & Yasha, K. (2009). Remediation and treatment of organopollutants mediated by peroxidases: a review. Critical Reviews in Biotechnology, 29(2), 94–119. https://doi.org/10.1080/07388550802685306 .

Samokyszyn, V. M., Freeman, J. P., Rao Maddipati, K., & Lloyd, R. V. (1995). Peroxidase-catalyzed oxidation of pentachlorophenol. Chemical Research in Toxicology, 8, 349–355 http://pubs.acs.org/doi/pdf/10.1021/tx00045a005 . Accessed 23 June 2017

Santos-Juanes, L., Amat, A. M., & Arques, A. (2017a). Strategies to drive photo-Fenton process at mild conditions for the removal of xenobiotics from aqueous systems. Current Organic Chemistry, 21(12), 1074–1083. https://doi.org/10.1136/adc.2010.199901 .

Santos-Juanes, L., García Einschlag, F. S., Amat, A. M., & Arques, A. (2017b). Combining ZVI reduction with photo-Fenton process for the removal of persistent pollutants. Chemical Engineering Journal, 310, 484–490. https://doi.org/10.1016/j.cej.2016.04.114 .

Sarria, V., Parra, S., Adler, N., Péringer, P., Benitez, N., & Pulgarin, C. (2002). Recent developments in the coupling of photoassisted and aerobic biological processes for the treatment of biorecalcitrant compounds. Catalysis Today, 76(2–4), 301–315. https://doi.org/10.1016/S0920-5861(02)00228-6 .

Sharma, S., Mukhopadhyay, M., & Murthy, Z. V. P. (2013). Treatment of chlorophenols from wastewaters by advanced oxidation processes. Separation & Purification Reviews, 42(May 2015), 37–41. https://doi.org/10.1080/15422119.2012.669804 .

Soler, J., García-Ripoll, A., Hayek, N., Miró, P., Vicente, R., Arques, A., & Amat, A. M. (2009). Effect of inorganic ions on the solar detoxification of water polluted with pesticides. Water Research, 43(18), 4441–4450. https://doi.org/10.1016/j.watres.2009.07.011 .

Steevensz, A., Cordova Villegas, L. G., Feng, W., Taylor, K. E., Bewtra, J. K., & Biswas, N. (2014). Soybean peroxidase for industrial wastewater treatment: a mini review. Journal of Environmental Engineering and Science, 9(3), 181–186. https://doi.org/10.1680/jees.13.00013 .

Sun, Z., Wei, X., Zhang, H., & Hu, X. (2015). Dechlorination of pentachlorophenol (PCP) in aqueous solution on novel Pd-loaded electrode modified with PPy-SDBS composite film. Environmental Science and Pollution Research, 22(5), 3828–3837. https://doi.org/10.1007/s11356-014-3641-x .

Tsai, W.-T. (2013). A review on environmental distributions and risk management of phenols pertaining to the endocrine disrupting chemicals in Taiwan. Toxicological & Environmental Chemistry, 95(5), 723–736. https://doi.org/10.1080/02772248.2013.818150 .

Valderrama, B., Ayala, M., & Vazquez-Duhalt, R. (2002, May 1). Suicide inactivation of peroxidases and the challenge of engineering more robust enzymes. Chemistry and Biology. Cell Press. https://doi.org/10.1016/S1074-5521(02)00149-7 .

Verbrugge, L. A., Kahn, L., & Morton, J. M. (2018). Pentachlorophenol, polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo furans in surface soil surrounding pentachlorophenol-treated utility poles on the Kenai National Wildlife Refuge, Alaska USA. Environmental Science and Pollution Research, 25(19), 19187–19195. https://doi.org/10.1007/s11356-018-2269-7 .

Wright, H., & Nicell, J. A. (1999). Characterization of soybean peroxidase for the treatment of aqueous phenols. Bioresource Technology, 70(1), 69–79. https://doi.org/10.1016/S0960-8524(99)00007-3 .

Zhang, G., & Nicell, J. A. (2000). Treatment of aqueous pentachlorophenol by horseradish peroxidase and hydrogen peroxide. Water Research, 34(5), 1629–1637. https://doi.org/10.1016/S0043-1354(99)00326-7 .

Zhang, J., Ye, P., Chen, S., & Wang, W. (2007). Removal of pentachlorophenol by immobilized horseradish peroxidase. International Biodeterioration & Biodegradation, 59, 307–314. https://doi.org/10.1016/j.ibiod.2006.09.003 .

Zheng, W., Yu, H., Wang, X., & Qu, W. (2012, July 1). Systematic review of pentachlorophenol occurrence in the environment and in humans in China: not a negligible health risk due to the re-emergence of schistosomiasis. Environment International. Pergamon. https://doi.org/10.1016/j.envint.2011.04.014 .

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem