Abad M, Noguera P, Bures S (2001) National inventory of organic wastes for use as growing media for ornamental potted plant production: case study in Spain. Biores Technol 77:197–200
Abad M, Fornes F, Carrión C, Noguera V, Noguera P, Maquieira A, Puchades R (2005) Physical properties of various coconut coir dusts compared to peat. HortScience 40:2138–2144
Akhtar SS, Andersen MN, Liu F (2014) Biochar enhances yield and quality of tomato under reduced irrigation. Agric Water Manag 138:37–44
[+]
Abad M, Noguera P, Bures S (2001) National inventory of organic wastes for use as growing media for ornamental potted plant production: case study in Spain. Biores Technol 77:197–200
Abad M, Fornes F, Carrión C, Noguera V, Noguera P, Maquieira A, Puchades R (2005) Physical properties of various coconut coir dusts compared to peat. HortScience 40:2138–2144
Akhtar SS, Andersen MN, Liu F (2014) Biochar enhances yield and quality of tomato under reduced irrigation. Agric Water Manag 138:37–44
Alexander PD, Bragg NC, Meade R, Padelopoulos G, Watts O (2008) Peat in horticulture and conservation: the UK response to a changing world. Mires Peat 3:1–10
Altland JE, Locke JC (2012) Biochar affects macronutrient leaching from a soilless substrate. HortScience 47:1136–1140
Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18
Bargmann I, Rilling MC, Buss W, Kruse A, Kuecke M (2013) Hydrocahr and biochar effects on germination of spring barley. J Agron Crop Sci 199:360–373
Bargmann I, Martens R, Rilling MC, Kruse A, Kücke M (2014) Hydrochar amendment promotes microbial immobilization of mineral nitrogen. J Plant Nutr Soil Sci 177:59–67
Belda RM, Mendoza-Hernández D, Fornes F (2013) Nutrient-rich compost versus nutrient-poor vermicomposts as growth media for ornamental plant production. J Plant Nutr Soil Sci 176:827–835
Belda RM, Lidón A, Fornes F (2016) Biochars and hydrochars as substrate constituents for soilless growth of myrtle and mastic. Ind Crops Prod 94:132–142
Bigelow CA, Bowman DC, Cassel DK (2001) Nitrogen leaching in sand-based rootzones amended with inorganic soil amendments and sphagnum peat. J Am Soc Hort Sci 126:151–156
Blok C, De Kreij C, Baas R, Weber G (2008) Analytical methods used in soilless cultivation. In: Raviv M, Lieth JH (eds) Soilless culture: theory and practice. Elsevier, London
Bunt AC (1988) Media and mixes for container-grown plants: a manual on the preparation and use of growing media for pot plants, 2nd edn. Unwin Hyman, London
Carmona E, Abad M (2008) Aplicación del compost en viveros y semilleros. In: Moreno J, Moral R (eds) Compostaje. Ed Mundi-Prensa, Madrid, pp 397–424
Carrión C, García de la Fuente R, Fornes F, Puchades R, Abad M (2008) Acidifying compost from vegetable crop wastes to prepare growing media for containerized crops. Compost Sci Util 16:20–29
Chan KY, Xu Z (2009) Biochar: nutrient properties and their enhancement. In: Lehmann J, Joseph S (eds) Biochar for environmental management science and technology. Earthscan, London, pp 67–84
Cho MS, Meng L, Song JH, Han SH, Bae K, Park BB (2017) The effects of biochars on the growth of Zelkova serrata seedlings in a containerized seedling production system. For Sci Technol 13:25–30
Cleary J, Roulet NT, Moore TR (2005) Greenhouse gas emissions from Canadian peat extraction, 1990–2000: a life-cycle analysis. Ambio 34:456–461
Di Lonardo S, Baronti S, Primo Vaccari F, Albanese L, Battista P, Miglietta F, Bacci L (2017) Biochar-based nursery substrates: the effect of peat substitution on reduced salinity. Urban For Urban Green 23:27–34
Doan TT, Ngo PT, Rumpel C, Nguyen BV, Jouquet P (2013) Interactions between compost, vermicompost and earthworms influence plant growth and yield: a one-year greenhouse experiment. Sci Hortic 160:148–154
Dumroese RK, Pinto JR, Heiskanen J, Tervahauta A, McBurney KG, Page-Dumroese DS, Englund K (2018) Biochar can be a suitable replacement for sphagnum peat in nursery production of Pinus ponderosa seedlings. Forests 9:232. https://doi.org/10.3390/f9050232
Dunlop SJ, Camps-Arbestain M, Bishop PA, Wargent JJ (2015) Closing the loop: use of biochar produced from tomato crop green waste as a substrate for soilless, hydroponic tomato production. HortScience 50:1572–1581
EN- European Standards. Soil improvers and growing media. European Committee for Standardization (CEN), Brussels, Belgium [EN 13037 (1999) Determination of pH pp 11] [EN 13038 (1999) Determination of Electrical Conductivity pp 13] [EN 13041 (1999) Determination of Physical Properties. Dry Bulk Density, Air Volume, Water Volume, Shrinkage Value and Total Pore Space pp 25] [EN 13652 (2001) Extraction of Water Soluble Nutrients and Elements pp 19] [EN 15428 (2007) Determination of Particle Size Distribution pp 21]
Forbes MS, Raison RJ, Skjemstad JO (2006) Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems. Sci Total Environ 370:190–206
Fornes F, Belda RM (2017) Acidification with nitric acid improves chemical characteristics and reduces phytotoxicity of alkaline chars. J Environ Manag 191:237–243
Fornes F, Belda RM (2018) Biochar versus hydrochar as growth media constituents for ornamental plant cultivation. Sci Agric 75:304–312
Fornes F, Belda RM, Carrión C, Noguera V, García-Agustín P, Abad M (2007) Pre-conditioning ornamental plants to drought by means of saline water irrigation as related to salinity tolerance. Sci Hotic 113:52–59
Fornes F, Carrión C, García de la Fuente R, Puchades R, Abad M (2010) Leaching composted lignocellulosic wastes to prepare container media: feasibility and environmental concerns. J Environ Manag 91:1747–1755
Fornes F, Mendoza-Hernández D, Belda RM (2013) Compost versus vermicompost as substrate constituents for rooting shrub cuttings. Spanish J Agric Res 11:518–528
Fornes F, Belda RM, Lidón A (2015) Analysis of two biochars and one hydrochar from different feedstock: focus set on environmental, nutritional and horticultural considerations. J Clean Prod 86:40–48
Fornes F, Belda RM, Fernández de Córdova P, Cebolla-Cornejo J (2017) Assessment of biochar and hydrochar as minor to major constituents of growing media for containerized tomato production. J Sci Food Agric 97:3675–3684
Gai X, Wang H, Liu J, Zhai L, Liu S, Ren T, Liu H (2014) Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PLoS One 9:e113888
Gaskin JW, Speir RA, Harris K, Das KC, Lee RD, Morris LA, Fisher DS (2010) Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agron J 102:623–633
Gastón A, Soriano C, Gómez-Miguel V (2009) Lithologic data improve plant species distribution models based on coarse-grained occurrence data. Investigación Agraria: Sistemas y Recursos Forestales 18:42–49
Gucci R, Aronne G, Lombardini L, Tattiani M (1997) Salinity tolerance of Phillyrea species. New Phytol 135:227–234
Gwenzi W, Nyambishi TJ, Chaukura N, Mapope N (2018) Synthesis and nutrient release patterns of a biochar-based N-P–K slow-release fertilizer. Int J Environ Sci Technol 15:405–414
Haase DL, Rose R (1995) Vector analysis and its use for interpreting plant nutrient shifts in response to silvicultural treatments. For Sci 41:54–66
Haefele SM, Yonboon Y, Wongboon W, Amarante S, Maarifat AA, Pfeiffer EM, Konoblauch C (2011) Effects and fate of biochar from rice residues in rice-based systems. Field Crops Res 121:430–440
Harfouche A, Baoune N, Merazga H (2007) Main and interaction effects of factors on softwood cutting of white poplar (Populus alba L.). Silvae Genet 56:287–294
Headlee WL, Brewer CE, Hall RB (2014) Biochar as substitute for vermiculite in potting mix for hybrid poplar. Bioenerg Res 7:120–131
Joseph S, Kammann CI, Shepherd JG, Conte P, Schmidt HP, Hagemann N, Rich AM, Marjo CE, Allen J, Munroe P, Mitchel DRG, Donne S, Spokas K, Graber ER (2018) Microstructural and associated chemical changes during the composting of a high temperature biochar: mechanisms for nitrate, phosphate and other nutrient retention and release. Sci Total Environ 618:1210–1223
Kammann C, Ratering S, Eckhard C, Müller C (2012) Biochar and hydrochar effects on greenhouse gas (carbon dioxide, nitrous oxide, and methane) fluxes from soils. J Environ Qual 41:1052–1066
Laird D, Fleming P, Wang B, Horton R, Karlen D (2010) Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158:436–442
Lee JA (1998) The calcicole—calcifuge problem revisited. In: Callow JA (ed) Advances in botanical research. Academic Press Haranhan, LA, pp 1–30
Lehmann J, Joseph S (2009) Biochar for enivronmental management: an Introduction. In: Lehmann J, Joseph S (eds) Biochar for enivronmental management. Science and Technology, Earthscan, London, pp 1–12
Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B, Skjemstad JO, Thies J, Luizaõ FJ, Petersen J, Neves G (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70:1719–1730
Lucia De, Cristiano G, Vecchietti L, Bruno L (2013) Effect of different rates of composted organic amendment on urban soil properties, growth and nutrient status of three Mediterranean native hedge species. Urban Forest Urban Green 12:537–545
Maher M, Prasad M, Raviv M (2008) Organic soilless media components. In: Raviv M, Lieth JH (eds) Soilless culture: theory and practice. Elsevier, London, pp 459–504
Malby E, Proctor MCF (1996) Peatlands in biosphere. Peatlands: their nature and role in the biosphere. In: Lappalainen E (ed) Global peat resources. International Peat Society, Jyskä, pp 11–19
Maronek DM, Studebaker D, Oberly B (1985) Improving media aeration in liner and container production. Comb Proc Int Plant Prop Soc 35:591–597
Martikainen PJ (1996) Peatlands in biosphere. The fluxes of greenhouse gases CO2, CH4 and N2O in northern peatlands. In: Lappalainen E (ed) Global peat resources. International Peat Society, Jyskä, pp 29–36
Mendez A, Paz-Ferreiro J, Gil E, Gasco G (2015) The effect of paper sludge and biochar addition on brown peat and coir based growing media properties. Sci Hortic 193:225–230
Mendoza-Hernández D, Fornes F, Belda RM (2014) Compost and vermicompost of horticultural waste as substrates for cutting rooting and growth of rosemary. Sci Hortic 178:192–202
Mills HA, Jones JB Jr (1996) Plant analysis handbook II. A practical sampling, preparation, analysis, and interpretation guide. Micro Macro Publishing, Athens
Mukherjee A, Zimmerman AR (2013) Organic carbon and nutrient release from a range of laboratory produced biochars and biochar soil mixtures. Geoderma 193–194:122–130
Ogaya R, Peñuelas J, Martínez-Vilalta J, Mangirón M (2003) Effect of droutgh on diameter increment of Querqus Ilex, Phillyrea latifolia and Arbutus unedo in a holm oak forest of NE Spain. For Ecol Manag 180:175–184
Ojanen P, Minkkinen K, Penttilä T (2013) The current greenhouse gas impact of forestry-drained boreal peatlands. For Ecol Manag 289:201–208
Omil B, Piñeiro V, Merino A (2013) Soil and tree responses to the application ofwood ash containing charcoal in two soils with contrasting properties. For Ecol Manag 295:199–212
Otani T, Ae N (2001) Interspecific differences in the role of root exudates in phosphorous acquisition. In: Ae N, Arihara J, Okada K, Srinivasan A (eds) Plant nutrient acquisition. New perspectives. Springer, Tokio, pp 71–100
Peng X, Ye LL, Wang CH, Zhou H, Sun B (2011) Temperature-and-duration-dependent rice staw-derived biochar: characteristics and its effects on soil properties of an Ultisol in southern China. Soil Tillage Res 112:159–166
Pérez-Bejarano A, Mataix-Solera J, Zornoza R, Guerrero C, Arcenegui V, Mataix-Beneyto J, Cano-Amat S (2010) Influence of plant species of physical, chemical and biological soil properties in a Mediterranean forest soil. Eur J For Res 129:15–24
Peterson JC (1981) Modify your pH perspective. Flor Rev 169:34–35, 92 and 94
Petruccelli R, Bonetti A, Traversi ML, Faraloni C, Valagussa M, Pozzi A (2015) Influence of biochar application on nutritional quality of tomato (Lycopersicon sculentum). Crop Past Sci 66:747–755
Pryce S (1991) The peat alternatives manual. A guide for the professional horticulturist and landscaper. Friends of the Earth, London
Randall PJ, Hayes JE, Hocking PJ, Richardson AE (2001) Root exudates in phosphorous acquisition by plants. In: Ae N, Arihara J, Okada K, Srinivasan A (eds) Plant nutrient acquisition. New Perspectives. Springer, Tokio, pp 71–100
Sáez JA, Belda RM, Bernal MP, Fornes F (2016) Biochar improves agro-environmental aspects of pig slurry compost as a substrate for crops with energy and remediation uses. Ind Crops Prod 94:97–106
Sanchís E, Rubio JL, Mansanet J (1986) Soils and vegetation in Mount Dehesa de la Albufera (Valencia) (in Spanish). Rev Agroquim Tecnol Alimentos 26:435–450
Sarauer J, Coleman MD (2018) Biochar as a growing media component for containerized production 1 of Douglas-fir. Can J For Res 48:581–588
Schmilevski G (2009) Growing medium constituents used in the EU. Acta Hortic 81:33–46
Spokas KA, Cantrell KB, Novak JM, Archer DW, Ippolito JA, Collins HP, Boateng AA, Lima IM, Lamb MC, McAloon AJ, Lentz RD, Nichols KA (2012) Biochar: a synthesis of its agronomic impact beyond carbon sequestration. J Environ Qual 41:973–989
Tate HT, Page T (2018) Cutting propagation of Santalum austrocaledonicum: the effect of genotype, cutting source, cutting size, propagation medium, IBA and irradiance. New For 49:551–570
Thomas SC, Gale N (2015) Biochar and forest restoration: a review and meta-analysis of tree growth responses. New For 46:931–946
Xu X, Kan Y, Zhao L, Cao X (2016) Chemical transformation of CO2 during its capture by waste biomass derived biochars. Environ Pollut 213:533–540
Yao C, Joseph S, Li L, Pan G, Lin Y, Munroe P, Pace B, Taherymoosavi S, Van Zwieten L, Thomas T, Nielsen S, Ye J, Donne S (2015) Developing more effective enhanced biochar fertilisers for improvement of pepper yield and quality. Pedosphere 25:703–712
Zhang L, Sun X, Tian Y, Gong X (2014) Biochar and humic acid amendments improve the quality of composted green waste as a growth medium for the ornamental plant Calathea insignis. Sci Hortic 176:70–78
[-]