- -

The MATH-BTB BPM3 and BPM5 subunits of Cullin3-RING E3 ubiquitin ligases target PP2CA and other clade A PP2Cs for degradation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The MATH-BTB BPM3 and BPM5 subunits of Cullin3-RING E3 ubiquitin ligases target PP2CA and other clade A PP2Cs for degradation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Julian-Valenzuela, Jose es_ES
dc.contributor.author Coego Gonzalez, Alberto es_ES
dc.contributor.author LOZANO JUSTE, JORGE es_ES
dc.contributor.author Lechner, Esther es_ES
dc.contributor.author Wu, Qian es_ES
dc.contributor.author Zhang, Xu es_ES
dc.contributor.author Merilo, Ebe es_ES
dc.contributor.author Belda Palazón, Borja es_ES
dc.contributor.author Park, Sang-Youl es_ES
dc.contributor.author Cutler, Sean R. es_ES
dc.contributor.author An, Chengcai es_ES
dc.contributor.author Genschik, Pascal es_ES
dc.contributor.author Rodríguez Egea, Pedro Luís es_ES
dc.date.accessioned 2021-01-08T04:31:02Z
dc.date.available 2021-01-08T04:31:02Z
dc.date.issued 2019-07-30 es_ES
dc.identifier.issn 0027-8424 es_ES
dc.identifier.uri http://hdl.handle.net/10251/158395
dc.description.abstract [EN] Early abscisic acid signaling involves degradation of clade A protein phosphatases type 2C (PP2Cs) as a complementary mechanism to PYR/PYL/RCAR-mediated inhibition of PP2C activity. At later steps, ABA induces up-regulation of PP2C transcripts and protein levels as a negative feedback mechanism. Therefore, resetting of ABA signaling also requires PP2C degradation to avoid excessive ABA-induced accumulation of PP2Cs. It has been demonstrated that ABA induces the degradation of existing ABI1 and PP2CA through the PUB12/13 and RGLG1/5 E3 ligases, respectively. However, other unidentified E3 ligases are predicted to regulate protein stability of clade A PP2Cs as well. In this work, we identified BTB/POZ AND MATH DOMAIN proteins (BPMs), substrate adaptors of the multimeric cullin3 (CUL3)-RING-based E3 ligases (CRL3s), as PP2CA-interacting proteins. BPM3 and BPM5 interact in the nucleus with PP2CA as well as with ABI1, ABI2, and HAB1. BPM3 and BPM5 accelerate the turnover of PP2Cs in an ABA-dependent manner and their overexpression leads to enhanced ABA sensitivity, whereas bpm3 bpm5 plants show increased accumulation of PP2CA, ABI1 and HAB1, which leads to global diminished ABA sensitivity. Using biochemical and genetic assays, we demonstrated that ubiquitination of PP2CA depends on BPM function. Given the formation of receptor-ABA-phosphatase ternary complexes is markedly affected by the abundance of protein components and ABA concentration, we reveal that BPMs and multimeric CRL3 E3 ligases are important modulators of PP2C coreceptor levels to regulate early ABA signaling as well as the later desensitizing-resetting steps. es_ES
dc.description.sponsorship Work in P.L.R.'s laboratory was supported by the Ministerio de Ciencia, Innovacion y Universidades (MICIU), Fondo Europeo de Desarrollo Regional, and Consejo Superior de Investigaciones Cientificas (grants BIO2014-52537-R and BIO2017-82503-R). P.G. acknowledges support from the Agence Nationale de la Recherche Laboratoires d'Excellence (grant ANR-10-LABX-0036_NETRNA). B.B.-P. was funded by Programa VALi+d GVA APOSTD/2017/039. J.J. was supported by a Formacion de Personal Investigador contract from MICIU. J.L.-J. was supported by a Juan de la Cierva contract from MICIU and by the Marie Sklodowska-Curie Action (grant H2020-MSCA-IF-2015-707477). E.M. was supported by the Estonian Research Council (grant PUT1133). We acknowledge Dr. Pablo Tornero for the gift of the pDEST15 plasmid and anti-GST antibody. es_ES
dc.language Inglés es_ES
dc.publisher Proceedings of the National Academy of Sciences es_ES
dc.relation.ispartof Proceedings of the National Academy of Sciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject ABA es_ES
dc.subject PP2Cs es_ES
dc.subject BPM es_ES
dc.subject CRL3 es_ES
dc.subject Substrate receptor es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title The MATH-BTB BPM3 and BPM5 subunits of Cullin3-RING E3 ubiquitin ligases target PP2CA and other clade A PP2Cs for degradation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1073/pnas.1908677116 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/707477/EU/Drought discovery to improve drought tolerance in crops/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-82503-R/ES/REGULACION DE LA SEÑALIZACION DEL ABA Y TOLERANCIA A SEQUIA MEDIANTE E3 UBIQUITIN LIGASAS QUE REGULAN EL RECAMBIO DE RECEPTORES Y FOSFATASAS 2C/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-10-LABX-0036/FR/Network of regulatory RNAs across kingdoms and dynamical responses to biotic and abiotic stresses/NetRNA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2014-52537-R/ES/REGULACION DE LA SEÑALIZACION DEL ABA MEDIANTE MECHANISMOS QUE AFECTAN LOCALIZACION SUBCELULAR, VIDA MEDIA Y ACTIVIDAD DE RECEPTORES PARA REFORZAR TOLERANCIA VEGETAL A SEQUIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2017%2F039/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Estonian Research Council//PUT1133/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Julian-Valenzuela, J.; Coego Gonzalez, A.; Lozano Juste, J.; Lechner, E.; Wu, Q.; Zhang, X.; Merilo, E.... (2019). The MATH-BTB BPM3 and BPM5 subunits of Cullin3-RING E3 ubiquitin ligases target PP2CA and other clade A PP2Cs for degradation. Proceedings of the National Academy of Sciences. 116(31):15725-15734. https://doi.org/10.1073/pnas.1908677116 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1073/pnas.1908677116 es_ES
dc.description.upvformatpinicio 15725 es_ES
dc.description.upvformatpfin 15734 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 116 es_ES
dc.description.issue 31 es_ES
dc.identifier.pmid 31308219 es_ES
dc.identifier.pmcid PMC6681733 es_ES
dc.relation.pasarela S\403520 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Estonian Research Council es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.contributor.funder Consejo Superior de Investigaciones Científicas es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., & Abrams, S. R. (2010). Abscisic Acid: Emergence of a Core Signaling Network. Annual Review of Plant Biology, 61(1), 651-679. doi:10.1146/annurev-arplant-042809-112122 es_ES
dc.description.references Finkelstein, R. (2013). Abscisic Acid Synthesis and Response. The Arabidopsis Book, 11, e0166. doi:10.1199/tab.0166 es_ES
dc.description.references Ma, Y., Szostkiewicz, I., Korte, A., Moes, D., Yang, Y., Christmann, A., & Grill, E. (2009). Regulators of PP2C Phosphatase Activity Function as Abscisic Acid Sensors. Science. doi:10.1126/science.1172408 es_ES
dc.description.references Park, S.-Y., Fung, P., Nishimura, N., Jensen, D. R., Fujii, H., Zhao, Y., … Cutler, S. R. (2009). Abscisic Acid Inhibits Type 2C Protein Phosphatases via the PYR/PYL Family of START Proteins. Science. doi:10.1126/science.1173041 es_ES
dc.description.references Santiago, J., Rodrigues, A., Saez, A., Rubio, S., Antoni, R., Dupeux, F., … Rodriguez, P. L. (2009). Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. The Plant Journal, 60(4), 575-588. doi:10.1111/j.1365-313x.2009.03981.x es_ES
dc.description.references Nishimura, N., Sarkeshik, A., Nito, K., Park, S., Wang, A., Carvalho, P. C., … Schroeder, J. I. (2010). PYR/PYL/RCAR family members are major in‐vivo ABI1 protein phosphatase 2C‐interacting proteins in Arabidopsis. The Plant Journal, 61(2), 290-299. doi:10.1111/j.1365-313x.2009.04054.x es_ES
dc.description.references Umezawa, T., Sugiyama, N., Mizoguchi, M., Hayashi, S., Myouga, F., Yamaguchi-Shinozaki, K., … Shinozaki, K. (2009). Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proceedings of the National Academy of Sciences, 106(41), 17588-17593. doi:10.1073/pnas.0907095106 es_ES
dc.description.references Vlad, F., Rubio, S., Rodrigues, A., Sirichandra, C., Belin, C., Robert, N., … Merlot, S. (2009). Protein Phosphatases 2C Regulate the Activation of the Snf1-Related Kinase OST1 by Abscisic Acid in Arabidopsis. The Plant Cell, 21(10), 3170-3184. doi:10.1105/tpc.109.069179 es_ES
dc.description.references Fujii, H., Chinnusamy, V., Rodrigues, A., Rubio, S., Antoni, R., Park, S.-Y., … Zhu, J.-K. (2009). In vitro reconstitution of an abscisic acid signalling pathway. Nature, 462(7273), 660-664. doi:10.1038/nature08599 es_ES
dc.description.references Fujii, H., & Zhu, J.-K. (2009). Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proceedings of the National Academy of Sciences, 106(20), 8380-8385. doi:10.1073/pnas.0903144106 es_ES
dc.description.references Nakashima, K., Fujita, Y., Kanamori, N., Katagiri, T., Umezawa, T., Kidokoro, S., … Yamaguchi-Shinozaki, K. (2009). Three Arabidopsis SnRK2 Protein Kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, Involved in ABA Signaling are Essential for the Control of Seed Development and Dormancy. Plant and Cell Physiology, 50(7), 1345-1363. doi:10.1093/pcp/pcp083 es_ES
dc.description.references Peirats-Llobet, M., Han, S.-K., Gonzalez-Guzman, M., Jeong, C. W., Rodriguez, L., Belda-Palazon, B., … Rodriguez, P. L. (2016). A Direct Link between Abscisic Acid Sensing and the Chromatin-Remodeling ATPase BRAHMA via Core ABA Signaling Pathway Components. Molecular Plant, 9(1), 136-147. doi:10.1016/j.molp.2015.10.003 es_ES
dc.description.references Geiger, D., Scherzer, S., Mumm, P., Stange, A., Marten, I., Bauer, H., … Hedrich, R. (2009). Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proceedings of the National Academy of Sciences, 106(50), 21425-21430. doi:10.1073/pnas.0912021106 es_ES
dc.description.references Lee, S. C., Lan, W., Buchanan, B. B., & Luan, S. (2009). A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proceedings of the National Academy of Sciences, 106(50), 21419-21424. doi:10.1073/pnas.0910601106 es_ES
dc.description.references Grondin, A., Rodrigues, O., Verdoucq, L., Merlot, S., Leonhardt, N., & Maurel, C. (2015). Aquaporins Contribute to ABA-Triggered Stomatal Closure through OST1-Mediated Phosphorylation. The Plant Cell, 27(7), 1945-1954. doi:10.1105/tpc.15.00421 es_ES
dc.description.references Umezawa, T., Sugiyama, N., Takahashi, F., Anderson, J. C., Ishihama, Y., Peck, S. C., & Shinozaki, K. (2013). Genetics and Phosphoproteomics Reveal a Protein Phosphorylation Network in the Abscisic Acid Signaling Pathway in Arabidopsis thaliana. Science Signaling, 6(270), rs8-rs8. doi:10.1126/scisignal.2003509 es_ES
dc.description.references Wang, P., Xue, L., Batelli, G., Lee, S., Hou, Y.-J., Van Oosten, M. J., … Zhu, J.-K. (2013). Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proceedings of the National Academy of Sciences, 110(27), 11205-11210. doi:10.1073/pnas.1308974110 es_ES
dc.description.references Szostkiewicz, I., Richter, K., Kepka, M., Demmel, S., Ma, Y., Korte, A., … Grill, E. (2010). Closely related receptor complexes differ in their ABA selectivity and sensitivity. The Plant Journal, 61(1), 25-35. doi:10.1111/j.1365-313x.2009.04025.x es_ES
dc.description.references Kong, L., Cheng, J., Zhu, Y., Ding, Y., Meng, J., Chen, Z., … Gong, Z. (2015). Degradation of the ABA co-receptor ABI1 by PUB12/13 U-box E3 ligases. Nature Communications, 6(1). doi:10.1038/ncomms9630 es_ES
dc.description.references Wu, Q., Zhang, X., Peirats-Llobet, M., Belda-Palazon, B., Wang, X., Cui, S., … An, C. (2016). Ubiquitin Ligases RGLG1 and RGLG5 Regulate Abscisic Acid Signaling by Controlling the Turnover of Phosphatase PP2CA. The Plant Cell, 28(9), 2178-2196. doi:10.1105/tpc.16.00364 es_ES
dc.description.references Belda‐Palazon, B., Julian, J., Coego, A., Wu, Q., Zhang, X., Batistic, O., … Rodriguez, P. L. (2019). ABA inhibits myristoylation and induces shuttling of the RGLG 1 E3 ligase to promote nuclear degradation of PP 2 CA. The Plant Journal, 98(5), 813-825. doi:10.1111/tpj.14274 es_ES
dc.description.references Santner, A., & Estelle, M. (2009). Recent advances and emerging trends in plant hormone signalling. Nature, 459(7250), 1071-1078. doi:10.1038/nature08122 es_ES
dc.description.references Romero-Barrios, N., & Vert, G. (2017). Proteasome-independent functions of lysine-63 polyubiquitination in plants. New Phytologist, 217(3), 995-1011. doi:10.1111/nph.14915 es_ES
dc.description.references Yu, F., & Xie, Q. (2017). Non-26S Proteasome Endomembrane Trafficking Pathways in ABA Signaling. Trends in Plant Science, 22(11), 976-985. doi:10.1016/j.tplants.2017.08.009 es_ES
dc.description.references Hua, Z., & Vierstra, R. D. (2011). The Cullin-RING Ubiquitin-Protein Ligases. Annual Review of Plant Biology, 62(1), 299-334. doi:10.1146/annurev-arplant-042809-112256 es_ES
dc.description.references Callis, J. (2014). The Ubiquitination Machinery of the Ubiquitin System. The Arabidopsis Book, 12, e0174. doi:10.1199/tab.0174 es_ES
dc.description.references Bueso, E., Rodriguez, L., Lorenzo-Orts, L., Gonzalez-Guzman, M., Sayas, E., Muñoz-Bertomeu, J., … Rodriguez, P. L. (2014). The single-subunit RING-type E3 ubiquitin ligase RSL1 targets PYL4 and PYR1 ABA receptors in plasma membrane to modulate abscisic acid signaling. The Plant Journal, 80(6), 1057-1071. doi:10.1111/tpj.12708 es_ES
dc.description.references Irigoyen, M. L., Iniesto, E., Rodriguez, L., Puga, M. I., Yanagawa, Y., Pick, E., … Rubio, V. (2014). Targeted Degradation of Abscisic Acid Receptors Is Mediated by the Ubiquitin Ligase Substrate Adaptor DDA1 in Arabidopsis. The Plant Cell, 26(2), 712-728. doi:10.1105/tpc.113.122234 es_ES
dc.description.references Vilela, B., Nájar, E., Lumbreras, V., Leung, J., & Pagès, M. (2015). Casein Kinase 2 Negatively Regulates Abscisic Acid-Activated SnRK2s in the Core Abscisic Acid-Signaling Module. Molecular Plant, 8(5), 709-721. doi:10.1016/j.molp.2014.12.012 es_ES
dc.description.references Belda-Palazon, B., Rodriguez, L., Fernandez, M. A., Castillo, M.-C., Anderson, E. M., Gao, C., … Rodriguez, P. L. (2016). FYVE1/FREE1 Interacts with the PYL4 ABA Receptor and Mediates Its Delivery to the Vacuolar Degradation Pathway. The Plant Cell, 28(9), 2291-2311. doi:10.1105/tpc.16.00178 es_ES
dc.description.references Yu, F., Lou, L., Tian, M., Li, Q., Ding, Y., Cao, X., … Xie, Q. (2016). ESCRT-I Component VPS23A Affects ABA Signaling by Recognizing ABA Receptors for Endosomal Degradation. Molecular Plant, 9(12), 1570-1582. doi:10.1016/j.molp.2016.11.002 es_ES
dc.description.references Yu, F., Wu, Y., & Xie, Q. (2016). Ubiquitin–Proteasome System in ABA Signaling: From Perception to Action. Molecular Plant, 9(1), 21-33. doi:10.1016/j.molp.2015.09.015 es_ES
dc.description.references Sheen, J. (1998). Mutational analysis of protein phosphatase 2C involved in abscisic acid signal transduction in higher plants. Proceedings of the National Academy of Sciences, 95(3), 975-980. doi:10.1073/pnas.95.3.975 es_ES
dc.description.references Kuhn, J. M., Boisson-Dernier, A., Dizon, M. B., Maktabi, M. H., & Schroeder, J. I. (2005). The Protein Phosphatase AtPP2CA Negatively Regulates Abscisic Acid Signal Transduction in Arabidopsis, and Effects of abh1 on AtPP2CA mRNA. Plant Physiology, 140(1), 127-139. doi:10.1104/pp.105.070318 es_ES
dc.description.references Yoshida, T., Nishimura, N., Kitahata, N., Kuromori, T., Ito, T., Asami, T., … Hirayama, T. (2005). ABA-Hypersensitive Germination3 Encodes a Protein Phosphatase 2C (AtPP2CA) That Strongly Regulates Abscisic Acid Signaling during Germination among Arabidopsis Protein Phosphatase 2Cs. Plant Physiology, 140(1), 115-126. doi:10.1104/pp.105.070128 es_ES
dc.description.references Rubio, S., Rodrigues, A., Saez, A., Dizon, M. B., Galle, A., Kim, T.-H., … Rodriguez, P. L. (2009). Triple Loss of Function of Protein Phosphatases Type 2C Leads to Partial Constitutive Response to Endogenous Abscisic Acid. Plant Physiology, 150(3), 1345-1355. doi:10.1104/pp.109.137174 es_ES
dc.description.references Brandt, B., Munemasa, S., Wang, C., Nguyen, D., Yong, T., Yang, P. G., … Schroeder, J. I. (2015). Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells. eLife, 4. doi:10.7554/elife.03599 es_ES
dc.description.references Lechner, E., Leonhardt, N., Eisler, H., Parmentier, Y., Alioua, M., Jacquet, H., … Genschik, P. (2011). MATH/BTB CRL3 Receptors Target the Homeodomain-Leucine Zipper ATHB6 to Modulate Abscisic Acid Signaling. Developmental Cell, 21(6), 1116-1128. doi:10.1016/j.devcel.2011.10.018 es_ES
dc.description.references Genschik, P., Sumara, I., & Lechner, E. (2013). The emerging family of CULLIN3-RING ubiquitin ligases (CRL3s): cellular functions and disease implications. The EMBO Journal, 32(17), 2307-2320. doi:10.1038/emboj.2013.173 es_ES
dc.description.references Zhuang, M., Calabrese, M. F., Liu, J., Waddell, M. B., Nourse, A., Hammel, M., … Schulman, B. A. (2009). Structures of SPOP-Substrate Complexes: Insights into Molecular Architectures of BTB-Cul3 Ubiquitin Ligases. Molecular Cell, 36(1), 39-50. doi:10.1016/j.molcel.2009.09.022 es_ES
dc.description.references Chen, L., Lee, J. H., Weber, H., Tohge, T., Witt, S., Roje, S., … Hellmann, H. (2013). Arabidopsis BPM Proteins Function as Substrate Adaptors to a CULLIN3-Based E3 Ligase to Affect Fatty Acid Metabolism in Plants. The Plant Cell, 25(6), 2253-2264. doi:10.1105/tpc.112.107292 es_ES
dc.description.references Sadana, P., Geyer, R., Pezoldt, J., Helmsing, S., Huehn, J., Hust, M., … Scrima, A. (2018). The invasin D protein from Yersinia pseudotuberculosis selectively binds the Fab region of host antibodies and affects colonization of the intestine. Journal of Biological Chemistry, 293(22), 8672-8690. doi:10.1074/jbc.ra117.001068 es_ES
dc.description.references Morimoto, K., Ohama, N., Kidokoro, S., Mizoi, J., Takahashi, F., Todaka, D., … Yamaguchi-Shinozaki, K. (2017). BPM-CUL3 E3 ligase modulates thermotolerance by facilitating negative regulatory domain-mediated degradation of DREB2A in Arabidopsis. Proceedings of the National Academy of Sciences, 114(40), E8528-E8536. doi:10.1073/pnas.1704189114 es_ES
dc.description.references Zhao, Q., Tian, M., Li, Q., Cui, F., Liu, L., Yin, B., & Xie, Q. (2013). A plant-specificin vitroubiquitination analysis system. The Plant Journal, 74(3), 524-533. doi:10.1111/tpj.12127 es_ES
dc.description.references Wang, X., Guo, C., Peng, J., Li, C., Wan, F., Zhang, S., … Li, J. (2018). ABRE-BINDING FACTORS play a role in the feedback regulation of ABA signaling by mediating rapid ABA induction of ABA co-receptor genes. New Phytologist, 221(1), 341-355. doi:10.1111/nph.15345 es_ES
dc.description.references Scott, D. C., Rhee, D. Y., Duda, D. M., Kelsall, I. R., Olszewski, J. L., Paulo, J. A., … Schulman, B. A. (2016). Two Distinct Types of E3 Ligases Work in Unison to Regulate Substrate Ubiquitylation. Cell, 166(5), 1198-1214.e24. doi:10.1016/j.cell.2016.07.027 es_ES
dc.description.references Lu, D., Lin, W., Gao, X., Wu, S., Cheng, C., Avila, J., … Shan, L. (2011). Direct Ubiquitination of Pattern Recognition Receptor FLS2 Attenuates Plant Innate Immunity. Science, 332(6036), 1439-1442. doi:10.1126/science.1204903 es_ES
dc.description.references Li, Z., Waadt, R., & Schroeder, J. I. (2016). Release of GTP Exchange Factor Mediated Down-Regulation of Abscisic Acid Signal Transduction through ABA-Induced Rapid Degradation of RopGEFs. PLOS Biology, 14(5), e1002461. doi:10.1371/journal.pbio.1002461 es_ES
dc.description.references Li, Z., Takahashi, Y., Scavo, A., Brandt, B., Nguyen, D., Rieu, P., & Schroeder, J. I. (2018). Abscisic acid-induced degradation of Arabidopsis guanine nucleotide exchange factor requires calcium-dependent protein kinases. Proceedings of the National Academy of Sciences, 115(19), E4522-E4531. doi:10.1073/pnas.1719659115 es_ES
dc.description.references Moes, D., Himmelbach, A., Korte, A., Haberer, G., & Grill, E. (2008). Nuclear localization of the mutant protein phosphatase abi1 is required for insensitivity towards ABA responses in Arabidopsis. The Plant Journal, 54(5), 806-819. doi:10.1111/j.1365-313x.2008.03454.x es_ES
dc.description.references Zhu, S.-Y., Yu, X.-C., Wang, X.-J., Zhao, R., Li, Y., Fan, R.-C., … Zhang, D.-P. (2007). Two Calcium-Dependent Protein Kinases, CPK4 and CPK11, Regulate Abscisic Acid Signal Transduction in Arabidopsis. The Plant Cell, 19(10), 3019-3036. doi:10.1105/tpc.107.050666 es_ES
dc.description.references Lynch, T., Erickson, B. J., & Finkelstein, R. R. (2012). Direct interactions of ABA-insensitive(ABI)-clade protein phosphatase(PP)2Cs with calcium-dependent protein kinases and ABA response element-binding bZIPs may contribute to turning off ABA response. Plant Molecular Biology, 80(6), 647-658. doi:10.1007/s11103-012-9973-3 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem