Mostrar el registro sencillo del ítem
dc.contributor.author | Julian-Valenzuela, Jose | es_ES |
dc.contributor.author | Coego Gonzalez, Alberto | es_ES |
dc.contributor.author | LOZANO JUSTE, JORGE | es_ES |
dc.contributor.author | Lechner, Esther | es_ES |
dc.contributor.author | Wu, Qian | es_ES |
dc.contributor.author | Zhang, Xu | es_ES |
dc.contributor.author | Merilo, Ebe | es_ES |
dc.contributor.author | Belda Palazón, Borja | es_ES |
dc.contributor.author | Park, Sang-Youl | es_ES |
dc.contributor.author | Cutler, Sean R. | es_ES |
dc.contributor.author | An, Chengcai | es_ES |
dc.contributor.author | Genschik, Pascal | es_ES |
dc.contributor.author | Rodríguez Egea, Pedro Luís | es_ES |
dc.date.accessioned | 2021-01-08T04:31:02Z | |
dc.date.available | 2021-01-08T04:31:02Z | |
dc.date.issued | 2019-07-30 | es_ES |
dc.identifier.issn | 0027-8424 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/158395 | |
dc.description.abstract | [EN] Early abscisic acid signaling involves degradation of clade A protein phosphatases type 2C (PP2Cs) as a complementary mechanism to PYR/PYL/RCAR-mediated inhibition of PP2C activity. At later steps, ABA induces up-regulation of PP2C transcripts and protein levels as a negative feedback mechanism. Therefore, resetting of ABA signaling also requires PP2C degradation to avoid excessive ABA-induced accumulation of PP2Cs. It has been demonstrated that ABA induces the degradation of existing ABI1 and PP2CA through the PUB12/13 and RGLG1/5 E3 ligases, respectively. However, other unidentified E3 ligases are predicted to regulate protein stability of clade A PP2Cs as well. In this work, we identified BTB/POZ AND MATH DOMAIN proteins (BPMs), substrate adaptors of the multimeric cullin3 (CUL3)-RING-based E3 ligases (CRL3s), as PP2CA-interacting proteins. BPM3 and BPM5 interact in the nucleus with PP2CA as well as with ABI1, ABI2, and HAB1. BPM3 and BPM5 accelerate the turnover of PP2Cs in an ABA-dependent manner and their overexpression leads to enhanced ABA sensitivity, whereas bpm3 bpm5 plants show increased accumulation of PP2CA, ABI1 and HAB1, which leads to global diminished ABA sensitivity. Using biochemical and genetic assays, we demonstrated that ubiquitination of PP2CA depends on BPM function. Given the formation of receptor-ABA-phosphatase ternary complexes is markedly affected by the abundance of protein components and ABA concentration, we reveal that BPMs and multimeric CRL3 E3 ligases are important modulators of PP2C coreceptor levels to regulate early ABA signaling as well as the later desensitizing-resetting steps. | es_ES |
dc.description.sponsorship | Work in P.L.R.'s laboratory was supported by the Ministerio de Ciencia, Innovacion y Universidades (MICIU), Fondo Europeo de Desarrollo Regional, and Consejo Superior de Investigaciones Cientificas (grants BIO2014-52537-R and BIO2017-82503-R). P.G. acknowledges support from the Agence Nationale de la Recherche Laboratoires d'Excellence (grant ANR-10-LABX-0036_NETRNA). B.B.-P. was funded by Programa VALi+d GVA APOSTD/2017/039. J.J. was supported by a Formacion de Personal Investigador contract from MICIU. J.L.-J. was supported by a Juan de la Cierva contract from MICIU and by the Marie Sklodowska-Curie Action (grant H2020-MSCA-IF-2015-707477). E.M. was supported by the Estonian Research Council (grant PUT1133). We acknowledge Dr. Pablo Tornero for the gift of the pDEST15 plasmid and anti-GST antibody. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Proceedings of the National Academy of Sciences | es_ES |
dc.relation.ispartof | Proceedings of the National Academy of Sciences | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | ABA | es_ES |
dc.subject | PP2Cs | es_ES |
dc.subject | BPM | es_ES |
dc.subject | CRL3 | es_ES |
dc.subject | Substrate receptor | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | The MATH-BTB BPM3 and BPM5 subunits of Cullin3-RING E3 ubiquitin ligases target PP2CA and other clade A PP2Cs for degradation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1073/pnas.1908677116 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/707477/EU/Drought discovery to improve drought tolerance in crops/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-82503-R/ES/REGULACION DE LA SEÑALIZACION DEL ABA Y TOLERANCIA A SEQUIA MEDIANTE E3 UBIQUITIN LIGASAS QUE REGULAN EL RECAMBIO DE RECEPTORES Y FOSFATASAS 2C/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-10-LABX-0036/FR/Network of regulatory RNAs across kingdoms and dynamical responses to biotic and abiotic stresses/NetRNA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIO2014-52537-R/ES/REGULACION DE LA SEÑALIZACION DEL ABA MEDIANTE MECHANISMOS QUE AFECTAN LOCALIZACION SUBCELULAR, VIDA MEDIA Y ACTIVIDAD DE RECEPTORES PARA REFORZAR TOLERANCIA VEGETAL A SEQUIA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//APOSTD%2F2017%2F039/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Estonian Research Council//PUT1133/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Julian-Valenzuela, J.; Coego Gonzalez, A.; Lozano Juste, J.; Lechner, E.; Wu, Q.; Zhang, X.; Merilo, E.... (2019). The MATH-BTB BPM3 and BPM5 subunits of Cullin3-RING E3 ubiquitin ligases target PP2CA and other clade A PP2Cs for degradation. Proceedings of the National Academy of Sciences. 116(31):15725-15734. https://doi.org/10.1073/pnas.1908677116 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1073/pnas.1908677116 | es_ES |
dc.description.upvformatpinicio | 15725 | es_ES |
dc.description.upvformatpfin | 15734 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 116 | es_ES |
dc.description.issue | 31 | es_ES |
dc.identifier.pmid | 31308219 | es_ES |
dc.identifier.pmcid | PMC6681733 | es_ES |
dc.relation.pasarela | S\403520 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Estonian Research Council | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Agence Nationale de la Recherche, Francia | es_ES |
dc.contributor.funder | Consejo Superior de Investigaciones Científicas | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., & Abrams, S. R. (2010). Abscisic Acid: Emergence of a Core Signaling Network. Annual Review of Plant Biology, 61(1), 651-679. doi:10.1146/annurev-arplant-042809-112122 | es_ES |
dc.description.references | Finkelstein, R. (2013). Abscisic Acid Synthesis and Response. The Arabidopsis Book, 11, e0166. doi:10.1199/tab.0166 | es_ES |
dc.description.references | Ma, Y., Szostkiewicz, I., Korte, A., Moes, D., Yang, Y., Christmann, A., & Grill, E. (2009). Regulators of PP2C Phosphatase Activity Function as Abscisic Acid Sensors. Science. doi:10.1126/science.1172408 | es_ES |
dc.description.references | Park, S.-Y., Fung, P., Nishimura, N., Jensen, D. R., Fujii, H., Zhao, Y., … Cutler, S. R. (2009). Abscisic Acid Inhibits Type 2C Protein Phosphatases via the PYR/PYL Family of START Proteins. Science. doi:10.1126/science.1173041 | es_ES |
dc.description.references | Santiago, J., Rodrigues, A., Saez, A., Rubio, S., Antoni, R., Dupeux, F., … Rodriguez, P. L. (2009). Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. The Plant Journal, 60(4), 575-588. doi:10.1111/j.1365-313x.2009.03981.x | es_ES |
dc.description.references | Nishimura, N., Sarkeshik, A., Nito, K., Park, S., Wang, A., Carvalho, P. C., … Schroeder, J. I. (2010). PYR/PYL/RCAR family members are major in‐vivo ABI1 protein phosphatase 2C‐interacting proteins in Arabidopsis. The Plant Journal, 61(2), 290-299. doi:10.1111/j.1365-313x.2009.04054.x | es_ES |
dc.description.references | Umezawa, T., Sugiyama, N., Mizoguchi, M., Hayashi, S., Myouga, F., Yamaguchi-Shinozaki, K., … Shinozaki, K. (2009). Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proceedings of the National Academy of Sciences, 106(41), 17588-17593. doi:10.1073/pnas.0907095106 | es_ES |
dc.description.references | Vlad, F., Rubio, S., Rodrigues, A., Sirichandra, C., Belin, C., Robert, N., … Merlot, S. (2009). Protein Phosphatases 2C Regulate the Activation of the Snf1-Related Kinase OST1 by Abscisic Acid in Arabidopsis. The Plant Cell, 21(10), 3170-3184. doi:10.1105/tpc.109.069179 | es_ES |
dc.description.references | Fujii, H., Chinnusamy, V., Rodrigues, A., Rubio, S., Antoni, R., Park, S.-Y., … Zhu, J.-K. (2009). In vitro reconstitution of an abscisic acid signalling pathway. Nature, 462(7273), 660-664. doi:10.1038/nature08599 | es_ES |
dc.description.references | Fujii, H., & Zhu, J.-K. (2009). Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proceedings of the National Academy of Sciences, 106(20), 8380-8385. doi:10.1073/pnas.0903144106 | es_ES |
dc.description.references | Nakashima, K., Fujita, Y., Kanamori, N., Katagiri, T., Umezawa, T., Kidokoro, S., … Yamaguchi-Shinozaki, K. (2009). Three Arabidopsis SnRK2 Protein Kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, Involved in ABA Signaling are Essential for the Control of Seed Development and Dormancy. Plant and Cell Physiology, 50(7), 1345-1363. doi:10.1093/pcp/pcp083 | es_ES |
dc.description.references | Peirats-Llobet, M., Han, S.-K., Gonzalez-Guzman, M., Jeong, C. W., Rodriguez, L., Belda-Palazon, B., … Rodriguez, P. L. (2016). A Direct Link between Abscisic Acid Sensing and the Chromatin-Remodeling ATPase BRAHMA via Core ABA Signaling Pathway Components. Molecular Plant, 9(1), 136-147. doi:10.1016/j.molp.2015.10.003 | es_ES |
dc.description.references | Geiger, D., Scherzer, S., Mumm, P., Stange, A., Marten, I., Bauer, H., … Hedrich, R. (2009). Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proceedings of the National Academy of Sciences, 106(50), 21425-21430. doi:10.1073/pnas.0912021106 | es_ES |
dc.description.references | Lee, S. C., Lan, W., Buchanan, B. B., & Luan, S. (2009). A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proceedings of the National Academy of Sciences, 106(50), 21419-21424. doi:10.1073/pnas.0910601106 | es_ES |
dc.description.references | Grondin, A., Rodrigues, O., Verdoucq, L., Merlot, S., Leonhardt, N., & Maurel, C. (2015). Aquaporins Contribute to ABA-Triggered Stomatal Closure through OST1-Mediated Phosphorylation. The Plant Cell, 27(7), 1945-1954. doi:10.1105/tpc.15.00421 | es_ES |
dc.description.references | Umezawa, T., Sugiyama, N., Takahashi, F., Anderson, J. C., Ishihama, Y., Peck, S. C., & Shinozaki, K. (2013). Genetics and Phosphoproteomics Reveal a Protein Phosphorylation Network in the Abscisic Acid Signaling Pathway in Arabidopsis thaliana. Science Signaling, 6(270), rs8-rs8. doi:10.1126/scisignal.2003509 | es_ES |
dc.description.references | Wang, P., Xue, L., Batelli, G., Lee, S., Hou, Y.-J., Van Oosten, M. J., … Zhu, J.-K. (2013). Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proceedings of the National Academy of Sciences, 110(27), 11205-11210. doi:10.1073/pnas.1308974110 | es_ES |
dc.description.references | Szostkiewicz, I., Richter, K., Kepka, M., Demmel, S., Ma, Y., Korte, A., … Grill, E. (2010). Closely related receptor complexes differ in their ABA selectivity and sensitivity. The Plant Journal, 61(1), 25-35. doi:10.1111/j.1365-313x.2009.04025.x | es_ES |
dc.description.references | Kong, L., Cheng, J., Zhu, Y., Ding, Y., Meng, J., Chen, Z., … Gong, Z. (2015). Degradation of the ABA co-receptor ABI1 by PUB12/13 U-box E3 ligases. Nature Communications, 6(1). doi:10.1038/ncomms9630 | es_ES |
dc.description.references | Wu, Q., Zhang, X., Peirats-Llobet, M., Belda-Palazon, B., Wang, X., Cui, S., … An, C. (2016). Ubiquitin Ligases RGLG1 and RGLG5 Regulate Abscisic Acid Signaling by Controlling the Turnover of Phosphatase PP2CA. The Plant Cell, 28(9), 2178-2196. doi:10.1105/tpc.16.00364 | es_ES |
dc.description.references | Belda‐Palazon, B., Julian, J., Coego, A., Wu, Q., Zhang, X., Batistic, O., … Rodriguez, P. L. (2019). ABA inhibits myristoylation and induces shuttling of the RGLG 1 E3 ligase to promote nuclear degradation of PP 2 CA. The Plant Journal, 98(5), 813-825. doi:10.1111/tpj.14274 | es_ES |
dc.description.references | Santner, A., & Estelle, M. (2009). Recent advances and emerging trends in plant hormone signalling. Nature, 459(7250), 1071-1078. doi:10.1038/nature08122 | es_ES |
dc.description.references | Romero-Barrios, N., & Vert, G. (2017). Proteasome-independent functions of lysine-63 polyubiquitination in plants. New Phytologist, 217(3), 995-1011. doi:10.1111/nph.14915 | es_ES |
dc.description.references | Yu, F., & Xie, Q. (2017). Non-26S Proteasome Endomembrane Trafficking Pathways in ABA Signaling. Trends in Plant Science, 22(11), 976-985. doi:10.1016/j.tplants.2017.08.009 | es_ES |
dc.description.references | Hua, Z., & Vierstra, R. D. (2011). The Cullin-RING Ubiquitin-Protein Ligases. Annual Review of Plant Biology, 62(1), 299-334. doi:10.1146/annurev-arplant-042809-112256 | es_ES |
dc.description.references | Callis, J. (2014). The Ubiquitination Machinery of the Ubiquitin System. The Arabidopsis Book, 12, e0174. doi:10.1199/tab.0174 | es_ES |
dc.description.references | Bueso, E., Rodriguez, L., Lorenzo-Orts, L., Gonzalez-Guzman, M., Sayas, E., Muñoz-Bertomeu, J., … Rodriguez, P. L. (2014). The single-subunit RING-type E3 ubiquitin ligase RSL1 targets PYL4 and PYR1 ABA receptors in plasma membrane to modulate abscisic acid signaling. The Plant Journal, 80(6), 1057-1071. doi:10.1111/tpj.12708 | es_ES |
dc.description.references | Irigoyen, M. L., Iniesto, E., Rodriguez, L., Puga, M. I., Yanagawa, Y., Pick, E., … Rubio, V. (2014). Targeted Degradation of Abscisic Acid Receptors Is Mediated by the Ubiquitin Ligase Substrate Adaptor DDA1 in Arabidopsis. The Plant Cell, 26(2), 712-728. doi:10.1105/tpc.113.122234 | es_ES |
dc.description.references | Vilela, B., Nájar, E., Lumbreras, V., Leung, J., & Pagès, M. (2015). Casein Kinase 2 Negatively Regulates Abscisic Acid-Activated SnRK2s in the Core Abscisic Acid-Signaling Module. Molecular Plant, 8(5), 709-721. doi:10.1016/j.molp.2014.12.012 | es_ES |
dc.description.references | Belda-Palazon, B., Rodriguez, L., Fernandez, M. A., Castillo, M.-C., Anderson, E. M., Gao, C., … Rodriguez, P. L. (2016). FYVE1/FREE1 Interacts with the PYL4 ABA Receptor and Mediates Its Delivery to the Vacuolar Degradation Pathway. The Plant Cell, 28(9), 2291-2311. doi:10.1105/tpc.16.00178 | es_ES |
dc.description.references | Yu, F., Lou, L., Tian, M., Li, Q., Ding, Y., Cao, X., … Xie, Q. (2016). ESCRT-I Component VPS23A Affects ABA Signaling by Recognizing ABA Receptors for Endosomal Degradation. Molecular Plant, 9(12), 1570-1582. doi:10.1016/j.molp.2016.11.002 | es_ES |
dc.description.references | Yu, F., Wu, Y., & Xie, Q. (2016). Ubiquitin–Proteasome System in ABA Signaling: From Perception to Action. Molecular Plant, 9(1), 21-33. doi:10.1016/j.molp.2015.09.015 | es_ES |
dc.description.references | Sheen, J. (1998). Mutational analysis of protein phosphatase 2C involved in abscisic acid signal transduction in higher plants. Proceedings of the National Academy of Sciences, 95(3), 975-980. doi:10.1073/pnas.95.3.975 | es_ES |
dc.description.references | Kuhn, J. M., Boisson-Dernier, A., Dizon, M. B., Maktabi, M. H., & Schroeder, J. I. (2005). The Protein Phosphatase AtPP2CA Negatively Regulates Abscisic Acid Signal Transduction in Arabidopsis, and Effects of abh1 on AtPP2CA mRNA. Plant Physiology, 140(1), 127-139. doi:10.1104/pp.105.070318 | es_ES |
dc.description.references | Yoshida, T., Nishimura, N., Kitahata, N., Kuromori, T., Ito, T., Asami, T., … Hirayama, T. (2005). ABA-Hypersensitive Germination3 Encodes a Protein Phosphatase 2C (AtPP2CA) That Strongly Regulates Abscisic Acid Signaling during Germination among Arabidopsis Protein Phosphatase 2Cs. Plant Physiology, 140(1), 115-126. doi:10.1104/pp.105.070128 | es_ES |
dc.description.references | Rubio, S., Rodrigues, A., Saez, A., Dizon, M. B., Galle, A., Kim, T.-H., … Rodriguez, P. L. (2009). Triple Loss of Function of Protein Phosphatases Type 2C Leads to Partial Constitutive Response to Endogenous Abscisic Acid. Plant Physiology, 150(3), 1345-1355. doi:10.1104/pp.109.137174 | es_ES |
dc.description.references | Brandt, B., Munemasa, S., Wang, C., Nguyen, D., Yong, T., Yang, P. G., … Schroeder, J. I. (2015). Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells. eLife, 4. doi:10.7554/elife.03599 | es_ES |
dc.description.references | Lechner, E., Leonhardt, N., Eisler, H., Parmentier, Y., Alioua, M., Jacquet, H., … Genschik, P. (2011). MATH/BTB CRL3 Receptors Target the Homeodomain-Leucine Zipper ATHB6 to Modulate Abscisic Acid Signaling. Developmental Cell, 21(6), 1116-1128. doi:10.1016/j.devcel.2011.10.018 | es_ES |
dc.description.references | Genschik, P., Sumara, I., & Lechner, E. (2013). The emerging family of CULLIN3-RING ubiquitin ligases (CRL3s): cellular functions and disease implications. The EMBO Journal, 32(17), 2307-2320. doi:10.1038/emboj.2013.173 | es_ES |
dc.description.references | Zhuang, M., Calabrese, M. F., Liu, J., Waddell, M. B., Nourse, A., Hammel, M., … Schulman, B. A. (2009). Structures of SPOP-Substrate Complexes: Insights into Molecular Architectures of BTB-Cul3 Ubiquitin Ligases. Molecular Cell, 36(1), 39-50. doi:10.1016/j.molcel.2009.09.022 | es_ES |
dc.description.references | Chen, L., Lee, J. H., Weber, H., Tohge, T., Witt, S., Roje, S., … Hellmann, H. (2013). Arabidopsis BPM Proteins Function as Substrate Adaptors to a CULLIN3-Based E3 Ligase to Affect Fatty Acid Metabolism in Plants. The Plant Cell, 25(6), 2253-2264. doi:10.1105/tpc.112.107292 | es_ES |
dc.description.references | Sadana, P., Geyer, R., Pezoldt, J., Helmsing, S., Huehn, J., Hust, M., … Scrima, A. (2018). The invasin D protein from Yersinia pseudotuberculosis selectively binds the Fab region of host antibodies and affects colonization of the intestine. Journal of Biological Chemistry, 293(22), 8672-8690. doi:10.1074/jbc.ra117.001068 | es_ES |
dc.description.references | Morimoto, K., Ohama, N., Kidokoro, S., Mizoi, J., Takahashi, F., Todaka, D., … Yamaguchi-Shinozaki, K. (2017). BPM-CUL3 E3 ligase modulates thermotolerance by facilitating negative regulatory domain-mediated degradation of DREB2A in Arabidopsis. Proceedings of the National Academy of Sciences, 114(40), E8528-E8536. doi:10.1073/pnas.1704189114 | es_ES |
dc.description.references | Zhao, Q., Tian, M., Li, Q., Cui, F., Liu, L., Yin, B., & Xie, Q. (2013). A plant-specificin vitroubiquitination analysis system. The Plant Journal, 74(3), 524-533. doi:10.1111/tpj.12127 | es_ES |
dc.description.references | Wang, X., Guo, C., Peng, J., Li, C., Wan, F., Zhang, S., … Li, J. (2018). ABRE-BINDING FACTORS play a role in the feedback regulation of ABA signaling by mediating rapid ABA induction of ABA co-receptor genes. New Phytologist, 221(1), 341-355. doi:10.1111/nph.15345 | es_ES |
dc.description.references | Scott, D. C., Rhee, D. Y., Duda, D. M., Kelsall, I. R., Olszewski, J. L., Paulo, J. A., … Schulman, B. A. (2016). Two Distinct Types of E3 Ligases Work in Unison to Regulate Substrate Ubiquitylation. Cell, 166(5), 1198-1214.e24. doi:10.1016/j.cell.2016.07.027 | es_ES |
dc.description.references | Lu, D., Lin, W., Gao, X., Wu, S., Cheng, C., Avila, J., … Shan, L. (2011). Direct Ubiquitination of Pattern Recognition Receptor FLS2 Attenuates Plant Innate Immunity. Science, 332(6036), 1439-1442. doi:10.1126/science.1204903 | es_ES |
dc.description.references | Li, Z., Waadt, R., & Schroeder, J. I. (2016). Release of GTP Exchange Factor Mediated Down-Regulation of Abscisic Acid Signal Transduction through ABA-Induced Rapid Degradation of RopGEFs. PLOS Biology, 14(5), e1002461. doi:10.1371/journal.pbio.1002461 | es_ES |
dc.description.references | Li, Z., Takahashi, Y., Scavo, A., Brandt, B., Nguyen, D., Rieu, P., & Schroeder, J. I. (2018). Abscisic acid-induced degradation of Arabidopsis guanine nucleotide exchange factor requires calcium-dependent protein kinases. Proceedings of the National Academy of Sciences, 115(19), E4522-E4531. doi:10.1073/pnas.1719659115 | es_ES |
dc.description.references | Moes, D., Himmelbach, A., Korte, A., Haberer, G., & Grill, E. (2008). Nuclear localization of the mutant protein phosphatase abi1 is required for insensitivity towards ABA responses in Arabidopsis. The Plant Journal, 54(5), 806-819. doi:10.1111/j.1365-313x.2008.03454.x | es_ES |
dc.description.references | Zhu, S.-Y., Yu, X.-C., Wang, X.-J., Zhao, R., Li, Y., Fan, R.-C., … Zhang, D.-P. (2007). Two Calcium-Dependent Protein Kinases, CPK4 and CPK11, Regulate Abscisic Acid Signal Transduction in Arabidopsis. The Plant Cell, 19(10), 3019-3036. doi:10.1105/tpc.107.050666 | es_ES |
dc.description.references | Lynch, T., Erickson, B. J., & Finkelstein, R. R. (2012). Direct interactions of ABA-insensitive(ABI)-clade protein phosphatase(PP)2Cs with calcium-dependent protein kinases and ABA response element-binding bZIPs may contribute to turning off ABA response. Plant Molecular Biology, 80(6), 647-658. doi:10.1007/s11103-012-9973-3 | es_ES |