- -

The MATH-BTB BPM3 and BPM5 subunits of Cullin3-RING E3 ubiquitin ligases target PP2CA and other clade A PP2Cs for degradation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The MATH-BTB BPM3 and BPM5 subunits of Cullin3-RING E3 ubiquitin ligases target PP2CA and other clade A PP2Cs for degradation

Mostrar el registro completo del ítem

Julian-Valenzuela, J.; Coego Gonzalez, A.; Lozano Juste, J.; Lechner, E.; Wu, Q.; Zhang, X.; Merilo, E.... (2019). The MATH-BTB BPM3 and BPM5 subunits of Cullin3-RING E3 ubiquitin ligases target PP2CA and other clade A PP2Cs for degradation. Proceedings of the National Academy of Sciences. 116(31):15725-15734. https://doi.org/10.1073/pnas.1908677116

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/158395

Ficheros en el ítem

Metadatos del ítem

Título: The MATH-BTB BPM3 and BPM5 subunits of Cullin3-RING E3 ubiquitin ligases target PP2CA and other clade A PP2Cs for degradation
Autor: Julian-Valenzuela, Jose Coego Gonzalez, Alberto LOZANO JUSTE, JORGE Lechner, Esther Wu, Qian Zhang, Xu Merilo, Ebe Belda Palazón, Borja Park, Sang-Youl Cutler, Sean R. An, Chengcai Genschik, Pascal Rodríguez Egea, Pedro Luís
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] Early abscisic acid signaling involves degradation of clade A protein phosphatases type 2C (PP2Cs) as a complementary mechanism to PYR/PYL/RCAR-mediated inhibition of PP2C activity. At later steps, ABA induces ...[+]
Palabras clave: ABA , PP2Cs , BPM , CRL3 , Substrate receptor
Derechos de uso: Reserva de todos los derechos
Fuente:
Proceedings of the National Academy of Sciences. (issn: 0027-8424 )
DOI: 10.1073/pnas.1908677116
Editorial:
Proceedings of the National Academy of Sciences
Versión del editor: https://doi.org/10.1073/pnas.1908677116
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/707477/EU/Drought discovery to improve drought tolerance in crops/
...[+]
info:eu-repo/grantAgreement/EC/H2020/707477/EU/Drought discovery to improve drought tolerance in crops/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-82503-R/ES/REGULACION DE LA SEÑALIZACION DEL ABA Y TOLERANCIA A SEQUIA MEDIANTE E3 UBIQUITIN LIGASAS QUE REGULAN EL RECAMBIO DE RECEPTORES Y FOSFATASAS 2C/
info:eu-repo/grantAgreement/ANR//ANR-10-LABX-0036/FR/Network of regulatory RNAs across kingdoms and dynamical responses to biotic and abiotic stresses/NetRNA/
info:eu-repo/grantAgreement/MINECO//BIO2014-52537-R/ES/REGULACION DE LA SEÑALIZACION DEL ABA MEDIANTE MECHANISMOS QUE AFECTAN LOCALIZACION SUBCELULAR, VIDA MEDIA Y ACTIVIDAD DE RECEPTORES PARA REFORZAR TOLERANCIA VEGETAL A SEQUIA/
info:eu-repo/grantAgreement/GVA//APOSTD%2F2017%2F039/
info:eu-repo/grantAgreement/Estonian Research Council//PUT1133/
[-]
Agradecimientos:
Work in P.L.R.'s laboratory was supported by the Ministerio de Ciencia, Innovacion y Universidades (MICIU), Fondo Europeo de Desarrollo Regional, and Consejo Superior de Investigaciones Cientificas (grants BIO2014-52537-R ...[+]
Tipo: Artículo

References

Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., & Abrams, S. R. (2010). Abscisic Acid: Emergence of a Core Signaling Network. Annual Review of Plant Biology, 61(1), 651-679. doi:10.1146/annurev-arplant-042809-112122

Finkelstein, R. (2013). Abscisic Acid Synthesis and Response. The Arabidopsis Book, 11, e0166. doi:10.1199/tab.0166

Ma, Y., Szostkiewicz, I., Korte, A., Moes, D., Yang, Y., Christmann, A., & Grill, E. (2009). Regulators of PP2C Phosphatase Activity Function as Abscisic Acid Sensors. Science. doi:10.1126/science.1172408 [+]
Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., & Abrams, S. R. (2010). Abscisic Acid: Emergence of a Core Signaling Network. Annual Review of Plant Biology, 61(1), 651-679. doi:10.1146/annurev-arplant-042809-112122

Finkelstein, R. (2013). Abscisic Acid Synthesis and Response. The Arabidopsis Book, 11, e0166. doi:10.1199/tab.0166

Ma, Y., Szostkiewicz, I., Korte, A., Moes, D., Yang, Y., Christmann, A., & Grill, E. (2009). Regulators of PP2C Phosphatase Activity Function as Abscisic Acid Sensors. Science. doi:10.1126/science.1172408

Park, S.-Y., Fung, P., Nishimura, N., Jensen, D. R., Fujii, H., Zhao, Y., … Cutler, S. R. (2009). Abscisic Acid Inhibits Type 2C Protein Phosphatases via the PYR/PYL Family of START Proteins. Science. doi:10.1126/science.1173041

Santiago, J., Rodrigues, A., Saez, A., Rubio, S., Antoni, R., Dupeux, F., … Rodriguez, P. L. (2009). Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. The Plant Journal, 60(4), 575-588. doi:10.1111/j.1365-313x.2009.03981.x

Nishimura, N., Sarkeshik, A., Nito, K., Park, S., Wang, A., Carvalho, P. C., … Schroeder, J. I. (2010). PYR/PYL/RCAR family members are major in‐vivo ABI1 protein phosphatase 2C‐interacting proteins in Arabidopsis. The Plant Journal, 61(2), 290-299. doi:10.1111/j.1365-313x.2009.04054.x

Umezawa, T., Sugiyama, N., Mizoguchi, M., Hayashi, S., Myouga, F., Yamaguchi-Shinozaki, K., … Shinozaki, K. (2009). Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proceedings of the National Academy of Sciences, 106(41), 17588-17593. doi:10.1073/pnas.0907095106

Vlad, F., Rubio, S., Rodrigues, A., Sirichandra, C., Belin, C., Robert, N., … Merlot, S. (2009). Protein Phosphatases 2C Regulate the Activation of the Snf1-Related Kinase OST1 by Abscisic Acid in Arabidopsis. The Plant Cell, 21(10), 3170-3184. doi:10.1105/tpc.109.069179

Fujii, H., Chinnusamy, V., Rodrigues, A., Rubio, S., Antoni, R., Park, S.-Y., … Zhu, J.-K. (2009). In vitro reconstitution of an abscisic acid signalling pathway. Nature, 462(7273), 660-664. doi:10.1038/nature08599

Fujii, H., & Zhu, J.-K. (2009). Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proceedings of the National Academy of Sciences, 106(20), 8380-8385. doi:10.1073/pnas.0903144106

Nakashima, K., Fujita, Y., Kanamori, N., Katagiri, T., Umezawa, T., Kidokoro, S., … Yamaguchi-Shinozaki, K. (2009). Three Arabidopsis SnRK2 Protein Kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, Involved in ABA Signaling are Essential for the Control of Seed Development and Dormancy. Plant and Cell Physiology, 50(7), 1345-1363. doi:10.1093/pcp/pcp083

Peirats-Llobet, M., Han, S.-K., Gonzalez-Guzman, M., Jeong, C. W., Rodriguez, L., Belda-Palazon, B., … Rodriguez, P. L. (2016). A Direct Link between Abscisic Acid Sensing and the Chromatin-Remodeling ATPase BRAHMA via Core ABA Signaling Pathway Components. Molecular Plant, 9(1), 136-147. doi:10.1016/j.molp.2015.10.003

Geiger, D., Scherzer, S., Mumm, P., Stange, A., Marten, I., Bauer, H., … Hedrich, R. (2009). Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proceedings of the National Academy of Sciences, 106(50), 21425-21430. doi:10.1073/pnas.0912021106

Lee, S. C., Lan, W., Buchanan, B. B., & Luan, S. (2009). A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proceedings of the National Academy of Sciences, 106(50), 21419-21424. doi:10.1073/pnas.0910601106

Grondin, A., Rodrigues, O., Verdoucq, L., Merlot, S., Leonhardt, N., & Maurel, C. (2015). Aquaporins Contribute to ABA-Triggered Stomatal Closure through OST1-Mediated Phosphorylation. The Plant Cell, 27(7), 1945-1954. doi:10.1105/tpc.15.00421

Umezawa, T., Sugiyama, N., Takahashi, F., Anderson, J. C., Ishihama, Y., Peck, S. C., & Shinozaki, K. (2013). Genetics and Phosphoproteomics Reveal a Protein Phosphorylation Network in the Abscisic Acid Signaling Pathway in Arabidopsis thaliana. Science Signaling, 6(270), rs8-rs8. doi:10.1126/scisignal.2003509

Wang, P., Xue, L., Batelli, G., Lee, S., Hou, Y.-J., Van Oosten, M. J., … Zhu, J.-K. (2013). Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proceedings of the National Academy of Sciences, 110(27), 11205-11210. doi:10.1073/pnas.1308974110

Szostkiewicz, I., Richter, K., Kepka, M., Demmel, S., Ma, Y., Korte, A., … Grill, E. (2010). Closely related receptor complexes differ in their ABA selectivity and sensitivity. The Plant Journal, 61(1), 25-35. doi:10.1111/j.1365-313x.2009.04025.x

Kong, L., Cheng, J., Zhu, Y., Ding, Y., Meng, J., Chen, Z., … Gong, Z. (2015). Degradation of the ABA co-receptor ABI1 by PUB12/13 U-box E3 ligases. Nature Communications, 6(1). doi:10.1038/ncomms9630

Wu, Q., Zhang, X., Peirats-Llobet, M., Belda-Palazon, B., Wang, X., Cui, S., … An, C. (2016). Ubiquitin Ligases RGLG1 and RGLG5 Regulate Abscisic Acid Signaling by Controlling the Turnover of Phosphatase PP2CA. The Plant Cell, 28(9), 2178-2196. doi:10.1105/tpc.16.00364

Belda‐Palazon, B., Julian, J., Coego, A., Wu, Q., Zhang, X., Batistic, O., … Rodriguez, P. L. (2019). ABA inhibits myristoylation and induces shuttling of the RGLG 1 E3 ligase to promote nuclear degradation of PP 2 CA. The Plant Journal, 98(5), 813-825. doi:10.1111/tpj.14274

Santner, A., & Estelle, M. (2009). Recent advances and emerging trends in plant hormone signalling. Nature, 459(7250), 1071-1078. doi:10.1038/nature08122

Romero-Barrios, N., & Vert, G. (2017). Proteasome-independent functions of lysine-63 polyubiquitination in plants. New Phytologist, 217(3), 995-1011. doi:10.1111/nph.14915

Yu, F., & Xie, Q. (2017). Non-26S Proteasome Endomembrane Trafficking Pathways in ABA Signaling. Trends in Plant Science, 22(11), 976-985. doi:10.1016/j.tplants.2017.08.009

Hua, Z., & Vierstra, R. D. (2011). The Cullin-RING Ubiquitin-Protein Ligases. Annual Review of Plant Biology, 62(1), 299-334. doi:10.1146/annurev-arplant-042809-112256

Callis, J. (2014). The Ubiquitination Machinery of the Ubiquitin System. The Arabidopsis Book, 12, e0174. doi:10.1199/tab.0174

Bueso, E., Rodriguez, L., Lorenzo-Orts, L., Gonzalez-Guzman, M., Sayas, E., Muñoz-Bertomeu, J., … Rodriguez, P. L. (2014). The single-subunit RING-type E3 ubiquitin ligase RSL1 targets PYL4 and PYR1 ABA receptors in plasma membrane to modulate abscisic acid signaling. The Plant Journal, 80(6), 1057-1071. doi:10.1111/tpj.12708

Irigoyen, M. L., Iniesto, E., Rodriguez, L., Puga, M. I., Yanagawa, Y., Pick, E., … Rubio, V. (2014). Targeted Degradation of Abscisic Acid Receptors Is Mediated by the Ubiquitin Ligase Substrate Adaptor DDA1 in Arabidopsis. The Plant Cell, 26(2), 712-728. doi:10.1105/tpc.113.122234

Vilela, B., Nájar, E., Lumbreras, V., Leung, J., & Pagès, M. (2015). Casein Kinase 2 Negatively Regulates Abscisic Acid-Activated SnRK2s in the Core Abscisic Acid-Signaling Module. Molecular Plant, 8(5), 709-721. doi:10.1016/j.molp.2014.12.012

Belda-Palazon, B., Rodriguez, L., Fernandez, M. A., Castillo, M.-C., Anderson, E. M., Gao, C., … Rodriguez, P. L. (2016). FYVE1/FREE1 Interacts with the PYL4 ABA Receptor and Mediates Its Delivery to the Vacuolar Degradation Pathway. The Plant Cell, 28(9), 2291-2311. doi:10.1105/tpc.16.00178

Yu, F., Lou, L., Tian, M., Li, Q., Ding, Y., Cao, X., … Xie, Q. (2016). ESCRT-I Component VPS23A Affects ABA Signaling by Recognizing ABA Receptors for Endosomal Degradation. Molecular Plant, 9(12), 1570-1582. doi:10.1016/j.molp.2016.11.002

Yu, F., Wu, Y., & Xie, Q. (2016). Ubiquitin–Proteasome System in ABA Signaling: From Perception to Action. Molecular Plant, 9(1), 21-33. doi:10.1016/j.molp.2015.09.015

Sheen, J. (1998). Mutational analysis of protein phosphatase 2C involved in abscisic acid signal transduction in higher plants. Proceedings of the National Academy of Sciences, 95(3), 975-980. doi:10.1073/pnas.95.3.975

Kuhn, J. M., Boisson-Dernier, A., Dizon, M. B., Maktabi, M. H., & Schroeder, J. I. (2005). The Protein Phosphatase AtPP2CA Negatively Regulates Abscisic Acid Signal Transduction in Arabidopsis, and Effects of abh1 on AtPP2CA mRNA. Plant Physiology, 140(1), 127-139. doi:10.1104/pp.105.070318

Yoshida, T., Nishimura, N., Kitahata, N., Kuromori, T., Ito, T., Asami, T., … Hirayama, T. (2005). ABA-Hypersensitive Germination3 Encodes a Protein Phosphatase 2C (AtPP2CA) That Strongly Regulates Abscisic Acid Signaling during Germination among Arabidopsis Protein Phosphatase 2Cs. Plant Physiology, 140(1), 115-126. doi:10.1104/pp.105.070128

Rubio, S., Rodrigues, A., Saez, A., Dizon, M. B., Galle, A., Kim, T.-H., … Rodriguez, P. L. (2009). Triple Loss of Function of Protein Phosphatases Type 2C Leads to Partial Constitutive Response to Endogenous Abscisic Acid. Plant Physiology, 150(3), 1345-1355. doi:10.1104/pp.109.137174

Brandt, B., Munemasa, S., Wang, C., Nguyen, D., Yong, T., Yang, P. G., … Schroeder, J. I. (2015). Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells. eLife, 4. doi:10.7554/elife.03599

Lechner, E., Leonhardt, N., Eisler, H., Parmentier, Y., Alioua, M., Jacquet, H., … Genschik, P. (2011). MATH/BTB CRL3 Receptors Target the Homeodomain-Leucine Zipper ATHB6 to Modulate Abscisic Acid Signaling. Developmental Cell, 21(6), 1116-1128. doi:10.1016/j.devcel.2011.10.018

Genschik, P., Sumara, I., & Lechner, E. (2013). The emerging family of CULLIN3-RING ubiquitin ligases (CRL3s): cellular functions and disease implications. The EMBO Journal, 32(17), 2307-2320. doi:10.1038/emboj.2013.173

Zhuang, M., Calabrese, M. F., Liu, J., Waddell, M. B., Nourse, A., Hammel, M., … Schulman, B. A. (2009). Structures of SPOP-Substrate Complexes: Insights into Molecular Architectures of BTB-Cul3 Ubiquitin Ligases. Molecular Cell, 36(1), 39-50. doi:10.1016/j.molcel.2009.09.022

Chen, L., Lee, J. H., Weber, H., Tohge, T., Witt, S., Roje, S., … Hellmann, H. (2013). Arabidopsis BPM Proteins Function as Substrate Adaptors to a CULLIN3-Based E3 Ligase to Affect Fatty Acid Metabolism in Plants. The Plant Cell, 25(6), 2253-2264. doi:10.1105/tpc.112.107292

Sadana, P., Geyer, R., Pezoldt, J., Helmsing, S., Huehn, J., Hust, M., … Scrima, A. (2018). The invasin D protein from Yersinia pseudotuberculosis selectively binds the Fab region of host antibodies and affects colonization of the intestine. Journal of Biological Chemistry, 293(22), 8672-8690. doi:10.1074/jbc.ra117.001068

Morimoto, K., Ohama, N., Kidokoro, S., Mizoi, J., Takahashi, F., Todaka, D., … Yamaguchi-Shinozaki, K. (2017). BPM-CUL3 E3 ligase modulates thermotolerance by facilitating negative regulatory domain-mediated degradation of DREB2A in Arabidopsis. Proceedings of the National Academy of Sciences, 114(40), E8528-E8536. doi:10.1073/pnas.1704189114

Zhao, Q., Tian, M., Li, Q., Cui, F., Liu, L., Yin, B., & Xie, Q. (2013). A plant-specificin vitroubiquitination analysis system. The Plant Journal, 74(3), 524-533. doi:10.1111/tpj.12127

Wang, X., Guo, C., Peng, J., Li, C., Wan, F., Zhang, S., … Li, J. (2018). ABRE-BINDING FACTORS play a role in the feedback regulation of ABA signaling by mediating rapid ABA induction of ABA co-receptor genes. New Phytologist, 221(1), 341-355. doi:10.1111/nph.15345

Scott, D. C., Rhee, D. Y., Duda, D. M., Kelsall, I. R., Olszewski, J. L., Paulo, J. A., … Schulman, B. A. (2016). Two Distinct Types of E3 Ligases Work in Unison to Regulate Substrate Ubiquitylation. Cell, 166(5), 1198-1214.e24. doi:10.1016/j.cell.2016.07.027

Lu, D., Lin, W., Gao, X., Wu, S., Cheng, C., Avila, J., … Shan, L. (2011). Direct Ubiquitination of Pattern Recognition Receptor FLS2 Attenuates Plant Innate Immunity. Science, 332(6036), 1439-1442. doi:10.1126/science.1204903

Li, Z., Waadt, R., & Schroeder, J. I. (2016). Release of GTP Exchange Factor Mediated Down-Regulation of Abscisic Acid Signal Transduction through ABA-Induced Rapid Degradation of RopGEFs. PLOS Biology, 14(5), e1002461. doi:10.1371/journal.pbio.1002461

Li, Z., Takahashi, Y., Scavo, A., Brandt, B., Nguyen, D., Rieu, P., & Schroeder, J. I. (2018). Abscisic acid-induced degradation of Arabidopsis guanine nucleotide exchange factor requires calcium-dependent protein kinases. Proceedings of the National Academy of Sciences, 115(19), E4522-E4531. doi:10.1073/pnas.1719659115

Moes, D., Himmelbach, A., Korte, A., Haberer, G., & Grill, E. (2008). Nuclear localization of the mutant protein phosphatase abi1 is required for insensitivity towards ABA responses in Arabidopsis. The Plant Journal, 54(5), 806-819. doi:10.1111/j.1365-313x.2008.03454.x

Zhu, S.-Y., Yu, X.-C., Wang, X.-J., Zhao, R., Li, Y., Fan, R.-C., … Zhang, D.-P. (2007). Two Calcium-Dependent Protein Kinases, CPK4 and CPK11, Regulate Abscisic Acid Signal Transduction in Arabidopsis. The Plant Cell, 19(10), 3019-3036. doi:10.1105/tpc.107.050666

Lynch, T., Erickson, B. J., & Finkelstein, R. R. (2012). Direct interactions of ABA-insensitive(ABI)-clade protein phosphatase(PP)2Cs with calcium-dependent protein kinases and ABA response element-binding bZIPs may contribute to turning off ABA response. Plant Molecular Biology, 80(6), 647-658. doi:10.1007/s11103-012-9973-3

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem