- -

Biohybrids of scaffolding hyaluronic acid biomaterials plus adipose stem cells home local neural stem and endothelial cells: Implications for reconstruction of brain lesions after stroke.

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Biohybrids of scaffolding hyaluronic acid biomaterials plus adipose stem cells home local neural stem and endothelial cells: Implications for reconstruction of brain lesions after stroke.

Mostrar el registro completo del ítem

Sanchez-Rojas, L.; Gómez-Pinedo, U.; Benito-Martin, MS.; León-Espinosa, G.; Rascón-Ramirez, F.; Lendinez, C.; Martínez-Ramos, C.... (2019). Biohybrids of scaffolding hyaluronic acid biomaterials plus adipose stem cells home local neural stem and endothelial cells: Implications for reconstruction of brain lesions after stroke. Journal of Biomedical Materials Research Part B Applied Biomaterials. 107(5):1598-1606. https://doi.org/10.1002/jbm.b.34252

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/158499

Ficheros en el ítem

Metadatos del ítem

Título: Biohybrids of scaffolding hyaluronic acid biomaterials plus adipose stem cells home local neural stem and endothelial cells: Implications for reconstruction of brain lesions after stroke.
Autor: Sanchez-Rojas, Leyre Gómez-Pinedo, Ulises Benito-Martin, María Soledad León-Espinosa, Gonzalo Rascón-Ramirez, Fernando Lendinez, Cristina Martínez-Ramos, Cristina Matías-Guiu, Jorge Monleón Pradas, Manuel Barcia, Juan A.
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
[EN] Endogenous neurogenesis in stroke is insufficient to replace the lost brain tissue, largely due to the lack of a proper biological structure to let new cells dwell in the damaged area. We hypothesized that scaffolds ...[+]
Palabras clave: Biomaterials , Hyaluronic acid , Cell therapy , Adipose stem cells , Stroke
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Biomedical Materials Research Part B Applied Biomaterials. (issn: 1552-4973 )
DOI: 10.1002/jbm.b.34252
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/jbm.b.34252
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MAT2015-66666-C3-2-R/ES/BIOHIBRIDOS PARA LA PROMOCION DEL CRECIMIENTO AXONAL Y LA REGENERACION EN LESION MEDULAR AGUDA Y CRONICA/
MINISTERIO DE ECONOMIA Y EMPRESA/MAT2011-28791-C03-02
...[+]
info:eu-repo/grantAgreement/MINECO//MAT2015-66666-C3-2-R/ES/BIOHIBRIDOS PARA LA PROMOCION DEL CRECIMIENTO AXONAL Y LA REGENERACION EN LESION MEDULAR AGUDA Y CRONICA/
info:eu-repo/grantAgreement/MINECO//RD12%2F0019%2F0010/ES/Terapia Celular/
info:eu-repo/grantAgreement/MICINN//MAT2011-28791-C03-01/ES/BIOHIBRIDOS DE CELULAS TRONCALES Y MATERIALES PARA AUMENTAR LA SUPERVIVENCIA, INTEGRACION Y REGENERACION AXONAL EN EL SISTEMA NERVIOSO CENTRAL.MODELOS ANIMALES DE EP, ELA E IC/
info:eu-repo/grantAgreement/MINECO//PRI-PIMNEU-2011-1372/ES/MATERIALES BIFUNCIONALES PARA LA REGENERACION NEURAL DE AREAS AFECTADAS POR ICTUS/
info:eu-repo/grantAgreement/MINECO//DPI2015-72863-EXP/ES/NEUROCABLES MODULARES: MULTIPLICANDO CONEXIONES NEURALES/
MINISTERIO DE ECONOMIA Y EMPRESA/MAT2011-28791-C03-02
[-]
Agradecimientos:
Contract grant sponsor: CIBER BBN Contract grant sponsor: ERANET NEURON CALL; contract grant number: PRI-PIMNEU-2011-1372 Contract grant sponsor: Spanish Science & Innovation Ministery; contract grant number: MAT ...[+]
Tipo: Artículo

References

Azad, T. D., Veeravagu, A., & Steinberg, G. K. (2016). Neurorestoration after stroke. Neurosurgical Focus, 40(5), E2. doi:10.3171/2016.2.focus15637

Faralli, A., Bigoni, M., Mauro, A., Rossi, F., & Carulli, D. (2013). Noninvasive Strategies to Promote Functional Recovery after Stroke. Neural Plasticity, 2013, 1-16. doi:10.1155/2013/854597

Yamashita, T., Ninomiya, M., Hernandez Acosta, P., Garcia-Verdugo, J. M., Sunabori, T., Sakaguchi, M., … Sawamoto, K. (2006). Subventricular Zone-Derived Neuroblasts Migrate and Differentiate into Mature Neurons in the Post-Stroke Adult Striatum. Journal of Neuroscience, 26(24), 6627-6636. doi:10.1523/jneurosci.0149-06.2006 [+]
Azad, T. D., Veeravagu, A., & Steinberg, G. K. (2016). Neurorestoration after stroke. Neurosurgical Focus, 40(5), E2. doi:10.3171/2016.2.focus15637

Faralli, A., Bigoni, M., Mauro, A., Rossi, F., & Carulli, D. (2013). Noninvasive Strategies to Promote Functional Recovery after Stroke. Neural Plasticity, 2013, 1-16. doi:10.1155/2013/854597

Yamashita, T., Ninomiya, M., Hernandez Acosta, P., Garcia-Verdugo, J. M., Sunabori, T., Sakaguchi, M., … Sawamoto, K. (2006). Subventricular Zone-Derived Neuroblasts Migrate and Differentiate into Mature Neurons in the Post-Stroke Adult Striatum. Journal of Neuroscience, 26(24), 6627-6636. doi:10.1523/jneurosci.0149-06.2006

Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z., & Lindvall, O. (2002). Neuronal replacement from endogenous precursors in the adult brain after stroke. Nature Medicine, 8(9), 963-970. doi:10.1038/nm747

Doeppner, T. R., & Hermann, D. M. (2015). Editorial: Stem cells and progenitor cells in ischemic stroke—fashion or future? Frontiers in Cellular Neuroscience, 9. doi:10.3389/fncel.2015.00334

Zhang, Z. G., & Chopp, M. (2015). Promoting brain remodeling to aid in stroke recovery. Trends in Molecular Medicine, 21(9), 543-548. doi:10.1016/j.molmed.2015.07.005

Crapo, P. M., Medberry, C. J., Reing, J. E., Tottey, S., van der Merwe, Y., Jones, K. E., & Badylak, S. F. (2012). Biologic scaffolds composed of central nervous system extracellular matrix. Biomaterials, 33(13), 3539-3547. doi:10.1016/j.biomaterials.2012.01.044

Ju, R., Wen, Y., Gou, R., Wang, Y., & Xu, Q. (2014). The Experimental Therapy on Brain Ischemia by Improvement of Local Angiogenesis with Tissue Engineering in the Mouse. Cell Transplantation, 23(1_suppl), 83-95. doi:10.3727/096368914x684998

Zhou, K., Motamed, S., Thouas, G. A., Bernard, C. C., Li, D., Parkington, H. C., … Forsythe, J. S. (2016). Graphene Functionalized Scaffolds Reduce the Inflammatory Response and Supports Endogenous Neuroblast Migration when Implanted in the Adult Brain. PLOS ONE, 11(3), e0151589. doi:10.1371/journal.pone.0151589

Elias, P. Z., & Spector, M. (2012). Implantation of a collagen scaffold seeded with adult rat hippocampal progenitors in a rat model of penetrating brain injury. Journal of Neuroscience Methods, 209(1), 199-211. doi:10.1016/j.jneumeth.2012.06.003

Tang, J. D., & Lampe, K. J. (2018). From de novo peptides to native proteins: advancements in biomaterial scaffolds for acute ischemic stroke repair. Biomedical Materials, 13(3), 034103. doi:10.1088/1748-605x/aaa4c3

Nih, L. R., Carmichael, S. T., & Segura, T. (2016). Hydrogels for brain repair after stroke: an emerging treatment option. Current Opinion in Biotechnology, 40, 155-163. doi:10.1016/j.copbio.2016.04.021

Moshayedi, P., Nih, L. R., Llorente, I. L., Berg, A. R., Cinkornpumin, J., Lowry, W. E., … Carmichael, S. T. (2016). Systematic optimization of an engineered hydrogel allows for selective control of human neural stem cell survival and differentiation after transplantation in the stroke brain. Biomaterials, 105, 145-155. doi:10.1016/j.biomaterials.2016.07.028

Lindvall, O., & Kokaia, Z. (2011). Stem Cell Research in Stroke. Stroke, 42(8), 2369-2375. doi:10.1161/strokeaha.110.599654

Reis, C., Wilkinson, M., Reis, H., Akyol, O., Gospodarev, V., Araujo, C., … Zhang, J. H. (2017). A Look into Stem Cell Therapy: Exploring the Options for Treatment of Ischemic Stroke. Stem Cells International, 2017, 1-14. doi:10.1155/2017/3267352

Ikegame, Y., Yamashita, K., Hayashi, S.-I., Mizuno, H., Tawada, M., You, F., … Iwama, T. (2011). Comparison of mesenchymal stem cells from adipose tissue and bone marrow for ischemic stroke therapy. Cytotherapy, 13(6), 675-685. doi:10.3109/14653249.2010.549122

Wei, X., Zhao, L., Zhong, J., Gu, H., Feng, D., Johnstone, B. H., … Du, Y. (2009). Adipose stromal cells-secreted neuroprotective media against neuronal apoptosis. Neuroscience Letters, 462(1), 76-79. doi:10.1016/j.neulet.2009.06.054

Gómez-Pinedo, U., Sanchez-Rojas, L., Benito-Martin, M. S., Lendinez, C., León-Espinosa, G., Rascón-Ramirez, F. J., … Barcia, J. A. (2018). Evaluation of the Safety and Efficacy of the Therapeutic Potential of Adipose-Derived Stem Cells Injected in the Cerebral Ischemic Penumbra. Journal of Stroke and Cerebrovascular Diseases, 27(9), 2453-2465. doi:10.1016/j.jstrokecerebrovasdis.2018.05.001

Rodríguez-Pérez, E., Lloret Compañ, A., Monleón Pradas, M., & Martínez-Ramos, C. (2016). Scaffolds of Hyaluronic Acid-Poly(Ethyl Acrylate) Interpenetrating Networks: Characterization and In Vitro Studies. Macromolecular Bioscience, 16(8), 1147-1157. doi:10.1002/mabi.201600028

Davoust, C., Plas, B., Béduer, A., Demain, B., Salabert, A.-S., Sol, J. C., … Loubinoux, I. (2017). Regenerative potential of primary adult human neural stem cells on micropatterned bio-implants boosts motor recovery. Stem Cell Research & Therapy, 8(1). doi:10.1186/s13287-017-0702-3

Bateman, M. E., Strong, A. L., Gimble, J. M., & Bunnell, B. A. (2018). Concise Review: Using Fat to Fight Disease: A Systematic Review of Nonhomologous Adipose-Derived Stromal/Stem Cell Therapies. STEM CELLS, 36(9), 1311-1328. doi:10.1002/stem.2847

Seo, J. H., Kim, H., Park, E. S., Lee, J. E., Kim, D. W., Kim, H. O., … Cho, S.-R. (2013). Environmental Enrichment Synergistically Improves Functional Recovery by Transplanted Adipose Stem Cells in Chronic Hypoxic-Ischemic Brain Injury. Cell Transplantation, 22(9), 1553-1568. doi:10.3727/096368912x662390

Palma-Tortosa, S., García-Culebras, A., Moraga, A., Hurtado, O., Perez-Ruiz, A., Durán-Laforet, V., … Lizasoain, I. (2017). Specific Features of SVZ Neurogenesis After Cortical Ischemia: a Longitudinal Study. Scientific Reports, 7(1). doi:10.1038/s41598-017-16109-7

Lu, J., Manaenko, A., & Hu, Q. (2017). Targeting Adult Neurogenesis for Poststroke Therapy. Stem Cells International, 2017, 1-10. doi:10.1155/2017/5868632

Faiz, M., Sachewsky, N., Gascón, S., Bang, K. W. A., Morshead, C. M., & Nagy, A. (2015). Adult Neural Stem Cells from the Subventricular Zone Give Rise to Reactive Astrocytes in the Cortex after Stroke. Cell Stem Cell, 17(5), 624-634. doi:10.1016/j.stem.2015.08.002

Moraga, A., Pradillo, J. M., García-Culebras, A., Palma-Tortosa, S., Ballesteros, I., Hernández-Jiménez, M., … Lizasoain, I. (2015). Aging increases microglial proliferation, delays cell migration, and decreases cortical neurogenesis after focal cerebral ischemia. Journal of Neuroinflammation, 12(1). doi:10.1186/s12974-015-0314-8

Oh, J. S., Park, I. S., Kim, K. N., Yoon, D. H., Kim, S.-H., & Ha, Y. (2012). Transplantation of an adipose stem cell cluster in a spinal cord injury. NeuroReport, 23(5), 277-282. doi:10.1097/wnr.0b013e3283505ae2

Erba, P., Terenghi, G., & J. Kingham, P. (2010). Neural Differentiation and Therapeutic Potential of Adipose Tissue Derived Stem Cells. Current Stem Cell Research & Therapy, 5(2), 153-160. doi:10.2174/157488810791268645

Grudzenski, S., Baier, S., Ebert, A., Pullens, P., Lemke, A., Bieback, K., … Fatar, M. (2017). The effect of adipose tissue-derived stem cells in a middle cerebral artery occlusion stroke model depends on their engraftment rate. Stem Cell Research & Therapy, 8(1). doi:10.1186/s13287-017-0545-y

Egashira, Y., Sugitani, S., Suzuki, Y., Mishiro, K., Tsuruma, K., Shimazawa, M., … Hara, H. (2012). The conditioned medium of murine and human adipose-derived stem cells exerts neuroprotective effects against experimental stroke model. Brain Research, 1461, 87-95. doi:10.1016/j.brainres.2012.04.033

Cunningham, C. J., Redondo-Castro, E., & Allan, S. M. (2018). The therapeutic potential of the mesenchymal stem cell secretome in ischaemic stroke. Journal of Cerebral Blood Flow & Metabolism, 38(8), 1276-1292. doi:10.1177/0271678x18776802

Gutiérrez-Fernández, M., Otero-Ortega, L., Ramos-Cejudo, J., Rodríguez-Frutos, B., Fuentes, B., & Díez-Tejedor, E. (2015). Adipose tissue-derived mesenchymal stem cells as a strategy to improve recovery after stroke. Expert Opinion on Biological Therapy, 15(6), 873-881. doi:10.1517/14712598.2015.1040386

Pérez‐GarnesM BarciaJA Gómez‐PinedoU Monleón PradasM Vallés‐LluchA(November 26th2014). Materials for Central Nervous System Tissue Engineering Cells and Biomaterials in Regenerative Medicine Daniel Eberli IntechOpen DOI: 10.5772/59339

Wang, Y., Wei, Y. T., Zu, Z. H., Ju, R. K., Guo, M. Y., Wang, X. M., … Cui, F. Z. (2011). Combination of Hyaluronic Acid Hydrogel Scaffold and PLGA Microspheres for Supporting Survival of Neural Stem Cells. Pharmaceutical Research, 28(6), 1406-1414. doi:10.1007/s11095-011-0452-3

Nih, L. R., Moshayedi, P., Llorente, I. L., Berg, A. R., Cinkornpumin, J., Lowry, W. E., … Carmichael, S. T. (2017). Engineered HA hydrogel for stem cell transplantation in the brain: Biocompatibility data using a design of experiment approach. Data in Brief, 10, 202-209. doi:10.1016/j.dib.2016.11.069

Nih, L. R., Gojgini, S., Carmichael, S. T., & Segura, T. (2018). Dual-function injectable angiogenic biomaterial for the repair of brain tissue following stroke. Nature Materials, 17(7), 642-651. doi:10.1038/s41563-018-0083-8

Lin, R., & Iacovitti, L. (2015). Classic and novel stem cell niches in brain homeostasis and repair. Brain Research, 1628, 327-342. doi:10.1016/j.brainres.2015.04.029

Ruddy, R. M., & Morshead, C. M. (2017). Home sweet home: the neural stem cell niche throughout development and after injury. Cell and Tissue Research, 371(1), 125-141. doi:10.1007/s00441-017-2658-0

Mora-Lee, S., Sirerol-Piquer, M. S., Gutiérrez-Pérez, M., Gomez-Pinedo, U., Roobrouck, V. D., López, T., … García-Verdugo, J. M. (2012). Therapeutic Effects of hMAPC and hMSC Transplantation after Stroke in Mice. PLoS ONE, 7(8), e43683. doi:10.1371/journal.pone.0043683

Boisserand, L. S. B., Kodama, T., Papassin, J., Auzely, R., Moisan, A., Rome, C., & Detante, O. (2016). Biomaterial Applications in Cell-Based Therapy in Experimental Stroke. Stem Cells International, 2016, 1-14. doi:10.1155/2016/6810562

Adams, A. M., Arruda, E. M., & Larkin, L. M. (2012). Use of adipose-derived stem cells to fabricate scaffoldless tissue-engineered neural conduits in vitro. Neuroscience, 201, 349-356. doi:10.1016/j.neuroscience.2011.11.004

Le Friec, A., Salabert, A.-S., Davoust, C., Demain, B., Vieu, C., Vaysse, L., … Loubinoux, I. (2017). Enhancing Plasticity of the Central Nervous System: Drugs, Stem Cell Therapy, and Neuro-Implants. Neural Plasticity, 2017, 1-9. doi:10.1155/2017/2545736

Traystman, R. J. (2003). Animal Models of Focal and Global Cerebral Ischemia. ILAR Journal, 44(2), 85-95. doi:10.1093/ilar.44.2.85

Doeppner, T. R., Kaltwasser, B., Teli, M. K., Sanchez-Mendoza, E. H., Kilic, E., Bähr, M., & Hermann, D. M. (2015). Post-stroke transplantation of adult subventricular zone derived neural progenitor cells — A comprehensive analysis of cell delivery routes and their underlying mechanisms. Experimental Neurology, 273, 45-56. doi:10.1016/j.expneurol.2015.07.023

Karatas, H., Erdener, S. E., Gursoy-Ozdemir, Y., Gurer, G., Soylemezoglu, F., Dunn, A. K., & Dalkara, T. (2011). Thrombotic distal middle cerebral artery occlusion produced by topical FeCl3 application: A novel model suitable for intravital microscopy and thrombolysis studies. Journal of Cerebral Blood Flow & Metabolism, 31(6), 1452-1460. doi:10.1038/jcbfm.2011.8

Karatas, H., Eun Jung, J., Lo, E. H., & van Leyen, K. (2018). Inhibiting 12/15-lipoxygenase to treat acute stroke in permanent and tPA induced thrombolysis models. Brain Research, 1678, 123-128. doi:10.1016/j.brainres.2017.10.024

Zhou, F., Gao, S., Wang, L., Sun, C., Chen, L., Yuan, P., … Chen, X. (2015). Human adipose-derived stem cells partially rescue the stroke syndromes by promoting spatial learning and memory in mouse middle cerebral artery occlusion model. Stem Cell Research & Therapy, 6(1). doi:10.1186/s13287-015-0078-1

Mora-Lee, S., Sirerol-Piquer, M. S., Gutiérrez-Pérez, M., López, T., Casado-Nieto, M., Jauquicoam, C., … García-Verdugo, J.-M. (2011). Histological and ultrastructural comparison of cauterization and thrombosis stroke models in immune-deficient mice. Journal of Inflammation, 8(1), 28. doi:10.1186/1476-9255-8-28

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem