- -

Permutation entropy: Influence of amplitude information on time series classification performance

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Permutation entropy: Influence of amplitude information on time series classification performance

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cuesta Frau, David es_ES
dc.date.accessioned 2021-01-19T04:31:50Z
dc.date.available 2021-01-19T04:31:50Z
dc.date.issued 2019 es_ES
dc.identifier.issn 1547-1063 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159336
dc.description.abstract [EN] Permutation Entropy (PE) is a very popular complexity analysis tool for time series. Despite its simplicity, it is very robust and yields goods results in applications related to assessing the randomness of a sequence, or as a quantitative feature for signal classification. It is based on computing the Shannon entropy of the relative frequency of all the ordinal patterns found in a time series. However, there is a basic consensus on the fact that only analysing sample order and not amplitude might have a detrimental effect on the performance of PE. As a consequence, a number of methods based on PE have been proposed in the last years to include the possible influence of sample amplitude. These methods claim to outperform PE but there is no general comparative analysis that confirms such claims independently. Furthermore, other statistics such as Sample Entropy (SampEn) are based solely on amplitude, and it could be argued that other tools like this one are better suited to exploit the amplitude differences than PE. The present study quantifies the performance of the standard PE method and other amplitude-included PE methods using a disparity of time series to find out if there are really significant performance differences. In addition, the study compares statistics based uniquely on ordinal or amplitude patterns. The objective was to ascertain whether the whole was more than the sum of its parts. The results confirmed that highest classification accuracy was achieved using both types of patterns simultaneously, instead of using standard PE (ordinal patterns), or SampEn (amplitude patterns) isolatedly. es_ES
dc.language Inglés es_ES
dc.relation.ispartof Mathematical Biosciences and Engineering es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Permutation entropy es_ES
dc.subject Amplitude aware permutation entropy es_ES
dc.subject Fine-grained permutation entropy es_ES
dc.subject Weighted permutation entropy es_ES
dc.subject Sample entropy es_ES
dc.subject Time series classification es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Permutation entropy: Influence of amplitude information on time series classification performance es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3934/mbe.2019342 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Cuesta Frau, D. (2019). Permutation entropy: Influence of amplitude information on time series classification performance. Mathematical Biosciences and Engineering. 16(6):6842-6857. https://doi.org/10.3934/mbe.2019342 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3934/mbe.2019342 es_ES
dc.description.upvformatpinicio 6842 es_ES
dc.description.upvformatpfin 6857 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16 es_ES
dc.description.issue 6 es_ES
dc.identifier.pmid 31698591 es_ES
dc.relation.pasarela S\401355 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem