- -

Block Preconditioning Matrices for the Newton Method to Compute the Dominant lambda-Modes Associated with the Neutron Diffusion Equation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Block Preconditioning Matrices for the Newton Method to Compute the Dominant lambda-Modes Associated with the Neutron Diffusion Equation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Carreño, Amanda es_ES
dc.contributor.author Bergamaschi, Luca es_ES
dc.contributor.author Martinez, Angeles es_ES
dc.contributor.author Vidal-Ferràndiz, Antoni es_ES
dc.contributor.author Ginestar Peiro, Damián es_ES
dc.contributor.author Verdú Martín, Gumersindo Jesús es_ES
dc.date.accessioned 2021-01-19T04:32:05Z
dc.date.available 2021-01-19T04:32:05Z
dc.date.issued 2019-03 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159343
dc.description.abstract [EN] In nuclear engineering, the lambda-modes associated with the neutron diffusion equation are applied to study the criticality of reactors and to develop modal methods for the transient analysis. The differential eigenvalue problem that needs to be solved is discretized using a finite element method, obtaining a generalized algebraic eigenvalue problem whose associated matrices are large and sparse. Then, efficient methods are needed to solve this problem. In this work, we used a block generalized Newton method implemented with a matrix-free technique that does not store all matrices explicitly. This technique reduces mainly the computational memory and, in some cases, when the assembly of the matrices is an expensive task, the computational time. The main problem is that the block Newton method requires solving linear systems, which need to be preconditioned. The construction of preconditioners such as ILU or ICC based on a fully-assembled matrix is not efficient in terms of the memory with the matrix-free implementation. As an alternative, several block preconditioners are studied that only save a few block matrices in comparison with the full problem. To test the performance of these methodologies, different reactor problems are studied. es_ES
dc.description.sponsorship This work has been partially supported by the Spanish Ministerio de Economia y Competitividad under Projects ENE2014-59442-P, MTM2014-58159-P, and BES-2015-072901. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Mathematical and Computational Applications (Online) es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Block preconditioner es_ES
dc.subject Generalized eigenvalue problem es_ES
dc.subject Neutron diffusion equation es_ES
dc.subject Modified block Newton method es_ES
dc.subject.classification INGENIERIA NUCLEAR es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Block Preconditioning Matrices for the Newton Method to Compute the Dominant lambda-Modes Associated with the Neutron Diffusion Equation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/mca24010009 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2014-58159-P/ES/PRECONDICIONADORES PARA SISTEMAS DE ECUACIONES LINEALES, PROBLEMAS DE MINIMOS CUADRADOS, CALCULO DE VALORES PROPIOS Y APLICACIONES TECNOLOGICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2014-59442-P/ES/DESARROLLO DE NUEVOS MODELOS Y CAPACIDADES EN EL SISTEMA DE CODIGOS ACOPLADO VALKIN%2FTH-3D. VERIFICACION, VALIDACION Y CUANTIFICACION DE INCERTIDUMBRES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2015-072901/ES/BES-2015-072901/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-85669-P/ES/PROBLEMAS MATRICIALES: COMPUTACION, TEORIA Y APLICACIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ENE2017-89029-P/ES/VERIFICACION, VALIDACION CUANTIFICACION DE INCERTIDUMBRES Y MEJORA DE LA PLATAFORMA NEUTRONICA%2FTERMOHIDRAULICA PANTHER/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Carreño, A.; Bergamaschi, L.; Martinez, A.; Vidal-Ferràndiz, A.; Ginestar Peiro, D.; Verdú Martín, GJ. (2019). Block Preconditioning Matrices for the Newton Method to Compute the Dominant lambda-Modes Associated with the Neutron Diffusion Equation. Mathematical and Computational Applications (Online). 24(1):157-170. https://doi.org/10.3390/mca24010009 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/mca24010009 es_ES
dc.description.upvformatpinicio 157 es_ES
dc.description.upvformatpfin 170 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2297-8747 es_ES
dc.relation.pasarela S\377365 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Vidal-Ferrandiz, A., Fayez, R., Ginestar, D., & Verdú, G. (2014). Solution of the Lambda modes problem of a nuclear power reactor using an h–p finite element method. Annals of Nuclear Energy, 72, 338-349. doi:10.1016/j.anucene.2014.05.026 es_ES
dc.description.references Bangerth, W., Hartmann, R., & Kanschat, G. (2007). deal.II—A general-purpose object-oriented finite element library. ACM Transactions on Mathematical Software, 33(4), 24. doi:10.1145/1268776.1268779 es_ES
dc.description.references Kronbichler, M., & Kormann, K. (2012). A generic interface for parallel cell-based finite element operator application. Computers & Fluids, 63, 135-147. doi:10.1016/j.compfluid.2012.04.012 es_ES
dc.description.references Sutton, T. M. (1988). Wielandt Iteration as Applied to the Nodal Expansion Method. Nuclear Science and Engineering, 98(2), 169-173. doi:10.13182/nse88-1 es_ES
dc.description.references Warsa, J. S., Wareing, T. A., Morel, J. E., McGhee, J. M., & Lehoucq, R. B. (2004). Krylov Subspace Iterations for Deterministick-Eigenvalue Calculations. Nuclear Science and Engineering, 147(1), 26-42. doi:10.13182/nse04-1 es_ES
dc.description.references Allen, E. J., & Berry, R. M. (2002). The inverse power method for calculation of multiplication factors. Annals of Nuclear Energy, 29(8), 929-935. doi:10.1016/s0306-4549(01)00082-2 es_ES
dc.description.references Verdú, G., Ginestar, D., Vidal, V., & Muñoz-Cobo, J. L. (1994). 3D λ-modes of the neutron-diffusion equation. Annals of Nuclear Energy, 21(7), 405-421. doi:10.1016/0306-4549(94)90041-8 es_ES
dc.description.references Verdu, G., Miro, R., Ginestar, D., & Vidal, V. (1999). The implicit restarted Arnoldi method, an efficient alternative to solve the neutron diffusion equation. Annals of Nuclear Energy, 26(7), 579-593. doi:10.1016/s0306-4549(98)00077-2 es_ES
dc.description.references Verdú, G., Ginestar, D., Miró, R., & Vidal, V. (2005). Using the Jacobi–Davidson method to obtain the dominant Lambda modes of a nuclear power reactor. Annals of Nuclear Energy, 32(11), 1274-1296. doi:10.1016/j.anucene.2005.03.002 es_ES
dc.description.references Hernandez, V., Roman, J. E., & Vidal, V. (2005). SLEPc. ACM Transactions on Mathematical Software, 31(3), 351-362. doi:10.1145/1089014.1089019 es_ES
dc.description.references Evans, T. M., Stafford, A. S., Slaybaugh, R. N., & Clarno, K. T. (2010). Denovo: A New Three-Dimensional Parallel Discrete Ordinates Code in SCALE. Nuclear Technology, 171(2), 171-200. doi:10.13182/nt171-171 es_ES
dc.description.references Hamilton, S. P., & Evans, T. M. (2015). Efficient solution of the simplified PN equations. Journal of Computational Physics, 284, 155-170. doi:10.1016/j.jcp.2014.12.014 es_ES
dc.description.references González-Pintor, S., Ginestar, D., & Verdú, G. (2011). Updating the Lambda modes of a nuclear power reactor. Mathematical and Computer Modelling, 54(7-8), 1796-1801. doi:10.1016/j.mcm.2010.12.013 es_ES
dc.description.references Carreño, A., Vidal-Ferràndiz, A., Ginestar, D., & Verdú, G. (2017). Spatial modes for the neutron diffusion equation and their computation. Annals of Nuclear Energy, 110, 1010-1022. doi:10.1016/j.anucene.2017.08.018 es_ES
dc.description.references Gill, D. F., & Azmy, Y. Y. (2011). Newton’s Method for Solving k-Eigenvalue Problems in Neutron Diffusion Theory. Nuclear Science and Engineering, 167(2), 141-153. doi:10.13182/nse09-98 es_ES
dc.description.references Knoll, D. A., Park, H., & Newman, C. (2011). Acceleration of k-Eigenvalue/Criticality Calculations Using the Jacobian-Free Newton-Krylov Method. Nuclear Science and Engineering, 167(2), 133-140. doi:10.13182/nse09-89 es_ES
dc.description.references Kong, F., Wang, Y., Schunert, S., Peterson, J. W., Permann, C. J., Andrš, D., & Martineau, R. C. (2018). A fully coupled two-level Schwarz preconditioner based on smoothed aggregation for the transient multigroup neutron diffusion equations. Numerical Linear Algebra with Applications, 25(3), e2162. doi:10.1002/nla.2162 es_ES
dc.description.references Lösche, R., Schwetlick, H., & Timmermann, G. (1998). A modified block Newton iteration for approximating an invariant subspace of a symmetric matrix. Linear Algebra and its Applications, 275-276, 381-400. doi:10.1016/s0024-3795(97)10018-0 es_ES
dc.description.references NEACRP 3-D LWR Core Transient Benchmark: Final Specificationshttps://www.oecd-nea.org/science/docs/1991/neacrp-l-1991-335.pdf es_ES
dc.description.references OECD/NEA Ringhals 1 Stability Benchmarkhttp://www.nea.fr/science/docs/1996/nsc-doc96-22.pdf es_ES
dc.description.references Carreño, A., Vidal-Ferràndiz, A., Ginestar, D., & Verdú, G. (2018). Block hybrid multilevel method to compute the dominant λ-modes of the neutron diffusion equation. Annals of Nuclear Energy, 121, 513-524. doi:10.1016/j.anucene.2018.08.010 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem