Mostrar el registro sencillo del ítem
dc.contributor.author | Carreño, Amanda | es_ES |
dc.contributor.author | Bergamaschi, Luca | es_ES |
dc.contributor.author | Martinez, Angeles | es_ES |
dc.contributor.author | Vidal-Ferràndiz, Antoni | es_ES |
dc.contributor.author | Ginestar Peiro, Damián | es_ES |
dc.contributor.author | Verdú Martín, Gumersindo Jesús | es_ES |
dc.date.accessioned | 2021-01-19T04:32:05Z | |
dc.date.available | 2021-01-19T04:32:05Z | |
dc.date.issued | 2019-03 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/159343 | |
dc.description.abstract | [EN] In nuclear engineering, the lambda-modes associated with the neutron diffusion equation are applied to study the criticality of reactors and to develop modal methods for the transient analysis. The differential eigenvalue problem that needs to be solved is discretized using a finite element method, obtaining a generalized algebraic eigenvalue problem whose associated matrices are large and sparse. Then, efficient methods are needed to solve this problem. In this work, we used a block generalized Newton method implemented with a matrix-free technique that does not store all matrices explicitly. This technique reduces mainly the computational memory and, in some cases, when the assembly of the matrices is an expensive task, the computational time. The main problem is that the block Newton method requires solving linear systems, which need to be preconditioned. The construction of preconditioners such as ILU or ICC based on a fully-assembled matrix is not efficient in terms of the memory with the matrix-free implementation. As an alternative, several block preconditioners are studied that only save a few block matrices in comparison with the full problem. To test the performance of these methodologies, different reactor problems are studied. | es_ES |
dc.description.sponsorship | This work has been partially supported by the Spanish Ministerio de Economia y Competitividad under Projects ENE2014-59442-P, MTM2014-58159-P, and BES-2015-072901. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Mathematical and Computational Applications (Online) | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Block preconditioner | es_ES |
dc.subject | Generalized eigenvalue problem | es_ES |
dc.subject | Neutron diffusion equation | es_ES |
dc.subject | Modified block Newton method | es_ES |
dc.subject.classification | INGENIERIA NUCLEAR | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Block Preconditioning Matrices for the Newton Method to Compute the Dominant lambda-Modes Associated with the Neutron Diffusion Equation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/mca24010009 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2014-58159-P/ES/PRECONDICIONADORES PARA SISTEMAS DE ECUACIONES LINEALES, PROBLEMAS DE MINIMOS CUADRADOS, CALCULO DE VALORES PROPIOS Y APLICACIONES TECNOLOGICAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//ENE2014-59442-P/ES/DESARROLLO DE NUEVOS MODELOS Y CAPACIDADES EN EL SISTEMA DE CODIGOS ACOPLADO VALKIN%2FTH-3D. VERIFICACION, VALIDACION Y CUANTIFICACION DE INCERTIDUMBRES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BES-2015-072901/ES/BES-2015-072901/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-85669-P/ES/PROBLEMAS MATRICIALES: COMPUTACION, TEORIA Y APLICACIONES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ENE2017-89029-P/ES/VERIFICACION, VALIDACION CUANTIFICACION DE INCERTIDUMBRES Y MEJORA DE LA PLATAFORMA NEUTRONICA%2FTERMOHIDRAULICA PANTHER/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.description.bibliographicCitation | Carreño, A.; Bergamaschi, L.; Martinez, A.; Vidal-Ferràndiz, A.; Ginestar Peiro, D.; Verdú Martín, GJ. (2019). Block Preconditioning Matrices for the Newton Method to Compute the Dominant lambda-Modes Associated with the Neutron Diffusion Equation. Mathematical and Computational Applications (Online). 24(1):157-170. https://doi.org/10.3390/mca24010009 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/mca24010009 | es_ES |
dc.description.upvformatpinicio | 157 | es_ES |
dc.description.upvformatpfin | 170 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 2297-8747 | es_ES |
dc.relation.pasarela | S\377365 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Vidal-Ferrandiz, A., Fayez, R., Ginestar, D., & Verdú, G. (2014). Solution of the Lambda modes problem of a nuclear power reactor using an h–p finite element method. Annals of Nuclear Energy, 72, 338-349. doi:10.1016/j.anucene.2014.05.026 | es_ES |
dc.description.references | Bangerth, W., Hartmann, R., & Kanschat, G. (2007). deal.II—A general-purpose object-oriented finite element library. ACM Transactions on Mathematical Software, 33(4), 24. doi:10.1145/1268776.1268779 | es_ES |
dc.description.references | Kronbichler, M., & Kormann, K. (2012). A generic interface for parallel cell-based finite element operator application. Computers & Fluids, 63, 135-147. doi:10.1016/j.compfluid.2012.04.012 | es_ES |
dc.description.references | Sutton, T. M. (1988). Wielandt Iteration as Applied to the Nodal Expansion Method. Nuclear Science and Engineering, 98(2), 169-173. doi:10.13182/nse88-1 | es_ES |
dc.description.references | Warsa, J. S., Wareing, T. A., Morel, J. E., McGhee, J. M., & Lehoucq, R. B. (2004). Krylov Subspace Iterations for Deterministick-Eigenvalue Calculations. Nuclear Science and Engineering, 147(1), 26-42. doi:10.13182/nse04-1 | es_ES |
dc.description.references | Allen, E. J., & Berry, R. M. (2002). The inverse power method for calculation of multiplication factors. Annals of Nuclear Energy, 29(8), 929-935. doi:10.1016/s0306-4549(01)00082-2 | es_ES |
dc.description.references | Verdú, G., Ginestar, D., Vidal, V., & Muñoz-Cobo, J. L. (1994). 3D λ-modes of the neutron-diffusion equation. Annals of Nuclear Energy, 21(7), 405-421. doi:10.1016/0306-4549(94)90041-8 | es_ES |
dc.description.references | Verdu, G., Miro, R., Ginestar, D., & Vidal, V. (1999). The implicit restarted Arnoldi method, an efficient alternative to solve the neutron diffusion equation. Annals of Nuclear Energy, 26(7), 579-593. doi:10.1016/s0306-4549(98)00077-2 | es_ES |
dc.description.references | Verdú, G., Ginestar, D., Miró, R., & Vidal, V. (2005). Using the Jacobi–Davidson method to obtain the dominant Lambda modes of a nuclear power reactor. Annals of Nuclear Energy, 32(11), 1274-1296. doi:10.1016/j.anucene.2005.03.002 | es_ES |
dc.description.references | Hernandez, V., Roman, J. E., & Vidal, V. (2005). SLEPc. ACM Transactions on Mathematical Software, 31(3), 351-362. doi:10.1145/1089014.1089019 | es_ES |
dc.description.references | Evans, T. M., Stafford, A. S., Slaybaugh, R. N., & Clarno, K. T. (2010). Denovo: A New Three-Dimensional Parallel Discrete Ordinates Code in SCALE. Nuclear Technology, 171(2), 171-200. doi:10.13182/nt171-171 | es_ES |
dc.description.references | Hamilton, S. P., & Evans, T. M. (2015). Efficient solution of the simplified PN equations. Journal of Computational Physics, 284, 155-170. doi:10.1016/j.jcp.2014.12.014 | es_ES |
dc.description.references | González-Pintor, S., Ginestar, D., & Verdú, G. (2011). Updating the Lambda modes of a nuclear power reactor. Mathematical and Computer Modelling, 54(7-8), 1796-1801. doi:10.1016/j.mcm.2010.12.013 | es_ES |
dc.description.references | Carreño, A., Vidal-Ferràndiz, A., Ginestar, D., & Verdú, G. (2017). Spatial modes for the neutron diffusion equation and their computation. Annals of Nuclear Energy, 110, 1010-1022. doi:10.1016/j.anucene.2017.08.018 | es_ES |
dc.description.references | Gill, D. F., & Azmy, Y. Y. (2011). Newton’s Method for Solving k-Eigenvalue Problems in Neutron Diffusion Theory. Nuclear Science and Engineering, 167(2), 141-153. doi:10.13182/nse09-98 | es_ES |
dc.description.references | Knoll, D. A., Park, H., & Newman, C. (2011). Acceleration of k-Eigenvalue/Criticality Calculations Using the Jacobian-Free Newton-Krylov Method. Nuclear Science and Engineering, 167(2), 133-140. doi:10.13182/nse09-89 | es_ES |
dc.description.references | Kong, F., Wang, Y., Schunert, S., Peterson, J. W., Permann, C. J., Andrš, D., & Martineau, R. C. (2018). A fully coupled two-level Schwarz preconditioner based on smoothed aggregation for the transient multigroup neutron diffusion equations. Numerical Linear Algebra with Applications, 25(3), e2162. doi:10.1002/nla.2162 | es_ES |
dc.description.references | Lösche, R., Schwetlick, H., & Timmermann, G. (1998). A modified block Newton iteration for approximating an invariant subspace of a symmetric matrix. Linear Algebra and its Applications, 275-276, 381-400. doi:10.1016/s0024-3795(97)10018-0 | es_ES |
dc.description.references | NEACRP 3-D LWR Core Transient Benchmark: Final Specificationshttps://www.oecd-nea.org/science/docs/1991/neacrp-l-1991-335.pdf | es_ES |
dc.description.references | OECD/NEA Ringhals 1 Stability Benchmarkhttp://www.nea.fr/science/docs/1996/nsc-doc96-22.pdf | es_ES |
dc.description.references | Carreño, A., Vidal-Ferràndiz, A., Ginestar, D., & Verdú, G. (2018). Block hybrid multilevel method to compute the dominant λ-modes of the neutron diffusion equation. Annals of Nuclear Energy, 121, 513-524. doi:10.1016/j.anucene.2018.08.010 | es_ES |