Vidal-Ferrandiz, A., Fayez, R., Ginestar, D., & Verdú, G. (2014). Solution of the Lambda modes problem of a nuclear power reactor using an h–p finite element method. Annals of Nuclear Energy, 72, 338-349. doi:10.1016/j.anucene.2014.05.026
Bangerth, W., Hartmann, R., & Kanschat, G. (2007). deal.II—A general-purpose object-oriented finite element library. ACM Transactions on Mathematical Software, 33(4), 24. doi:10.1145/1268776.1268779
Kronbichler, M., & Kormann, K. (2012). A generic interface for parallel cell-based finite element operator application. Computers & Fluids, 63, 135-147. doi:10.1016/j.compfluid.2012.04.012
[+]
Vidal-Ferrandiz, A., Fayez, R., Ginestar, D., & Verdú, G. (2014). Solution of the Lambda modes problem of a nuclear power reactor using an h–p finite element method. Annals of Nuclear Energy, 72, 338-349. doi:10.1016/j.anucene.2014.05.026
Bangerth, W., Hartmann, R., & Kanschat, G. (2007). deal.II—A general-purpose object-oriented finite element library. ACM Transactions on Mathematical Software, 33(4), 24. doi:10.1145/1268776.1268779
Kronbichler, M., & Kormann, K. (2012). A generic interface for parallel cell-based finite element operator application. Computers & Fluids, 63, 135-147. doi:10.1016/j.compfluid.2012.04.012
Sutton, T. M. (1988). Wielandt Iteration as Applied to the Nodal Expansion Method. Nuclear Science and Engineering, 98(2), 169-173. doi:10.13182/nse88-1
Warsa, J. S., Wareing, T. A., Morel, J. E., McGhee, J. M., & Lehoucq, R. B. (2004). Krylov Subspace Iterations for Deterministick-Eigenvalue Calculations. Nuclear Science and Engineering, 147(1), 26-42. doi:10.13182/nse04-1
Allen, E. J., & Berry, R. M. (2002). The inverse power method for calculation of multiplication factors. Annals of Nuclear Energy, 29(8), 929-935. doi:10.1016/s0306-4549(01)00082-2
Verdú, G., Ginestar, D., Vidal, V., & Muñoz-Cobo, J. L. (1994). 3D λ-modes of the neutron-diffusion equation. Annals of Nuclear Energy, 21(7), 405-421. doi:10.1016/0306-4549(94)90041-8
Verdu, G., Miro, R., Ginestar, D., & Vidal, V. (1999). The implicit restarted Arnoldi method, an efficient alternative to solve the neutron diffusion equation. Annals of Nuclear Energy, 26(7), 579-593. doi:10.1016/s0306-4549(98)00077-2
Verdú, G., Ginestar, D., Miró, R., & Vidal, V. (2005). Using the Jacobi–Davidson method to obtain the dominant Lambda modes of a nuclear power reactor. Annals of Nuclear Energy, 32(11), 1274-1296. doi:10.1016/j.anucene.2005.03.002
Hernandez, V., Roman, J. E., & Vidal, V. (2005). SLEPc. ACM Transactions on Mathematical Software, 31(3), 351-362. doi:10.1145/1089014.1089019
Evans, T. M., Stafford, A. S., Slaybaugh, R. N., & Clarno, K. T. (2010). Denovo: A New Three-Dimensional Parallel Discrete Ordinates Code in SCALE. Nuclear Technology, 171(2), 171-200. doi:10.13182/nt171-171
Hamilton, S. P., & Evans, T. M. (2015). Efficient solution of the simplified PN equations. Journal of Computational Physics, 284, 155-170. doi:10.1016/j.jcp.2014.12.014
González-Pintor, S., Ginestar, D., & Verdú, G. (2011). Updating the Lambda modes of a nuclear power reactor. Mathematical and Computer Modelling, 54(7-8), 1796-1801. doi:10.1016/j.mcm.2010.12.013
Carreño, A., Vidal-Ferràndiz, A., Ginestar, D., & Verdú, G. (2017). Spatial modes for the neutron diffusion equation and their computation. Annals of Nuclear Energy, 110, 1010-1022. doi:10.1016/j.anucene.2017.08.018
Gill, D. F., & Azmy, Y. Y. (2011). Newton’s Method for Solving k-Eigenvalue Problems in Neutron Diffusion Theory. Nuclear Science and Engineering, 167(2), 141-153. doi:10.13182/nse09-98
Knoll, D. A., Park, H., & Newman, C. (2011). Acceleration of k-Eigenvalue/Criticality Calculations Using the Jacobian-Free Newton-Krylov Method. Nuclear Science and Engineering, 167(2), 133-140. doi:10.13182/nse09-89
Kong, F., Wang, Y., Schunert, S., Peterson, J. W., Permann, C. J., Andrš, D., & Martineau, R. C. (2018). A fully coupled two-level Schwarz preconditioner based on smoothed aggregation for the transient multigroup neutron diffusion equations. Numerical Linear Algebra with Applications, 25(3), e2162. doi:10.1002/nla.2162
Lösche, R., Schwetlick, H., & Timmermann, G. (1998). A modified block Newton iteration for approximating an invariant subspace of a symmetric matrix. Linear Algebra and its Applications, 275-276, 381-400. doi:10.1016/s0024-3795(97)10018-0
NEACRP 3-D LWR Core Transient Benchmark: Final Specificationshttps://www.oecd-nea.org/science/docs/1991/neacrp-l-1991-335.pdf
OECD/NEA Ringhals 1 Stability Benchmarkhttp://www.nea.fr/science/docs/1996/nsc-doc96-22.pdf
Carreño, A., Vidal-Ferràndiz, A., Ginestar, D., & Verdú, G. (2018). Block hybrid multilevel method to compute the dominant λ-modes of the neutron diffusion equation. Annals of Nuclear Energy, 121, 513-524. doi:10.1016/j.anucene.2018.08.010
[-]