- -

Comparison of OMI-DOAS total ozone column with ground-based measurements in Argentina

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparison of OMI-DOAS total ozone column with ground-based measurements in Argentina

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Orte, P. F. es_ES
dc.contributor.author Luccini, E. es_ES
dc.contributor.author Wolfram, E. es_ES
dc.contributor.author Nollas, F. es_ES
dc.contributor.author Pallotta, J. es_ES
dc.contributor.author D'Elia, R. es_ES
dc.contributor.author Carbajal, G. es_ES
dc.contributor.author Mbatha, N. es_ES
dc.contributor.author Hlongwane, N. es_ES
dc.coverage.spatial east=-63.61667199999999; north=-38.416097; name=Argentina es_ES
dc.date.accessioned 2021-01-20T13:26:59Z
dc.date.available 2021-01-20T13:26:59Z
dc.date.issued 2020-12-28
dc.identifier.issn 1133-0953
dc.identifier.uri http://hdl.handle.net/10251/159573
dc.description.abstract [EN] Total ozone column (TOC) measurements through the Ozone Monitoring Instrument (OMI/NASA EOSAura) are compared with ground-based observations made using Dobson and SAOZ instruments for the period 2004–2019 and 2008–02/2020, respectively. The OMI data were inverted using the Differential Optical Absorption Spectroscopy algorithm (overpass OMI-DOAS). The four ground-based sites used for the analysis are located in subpolar and subtropical latitudes spanning from 34°S to 54°S in the Southern Hemisphere, in the Argentine cities of Buenos Aires (34.58°S, 58.36°W; 25 m a.s.l.), Comodoro Rivadavia (45.86°S, 67.50°W; 46 m a.s.l.), Río Gallegos (51.60°S, 69.30°W; 72 m a.s.l.) and Ushuaia (54.80°S, 68.30°W; 14 m a.s.l.). The linear regression analyzes showed correlation values greater than 0.90 for all sites. The OMI measurements revealed an overestimation of less than 4 % with respect to the Dobson instruments, while the comparison with the SAOZ instrument presented a very low underestimation of less than 1 %. es_ES
dc.description.abstract [ES] En este trabajo se comparan mediciones de columna total de ozono (CTO) del Ozone Monitoring Instrument (OMI/NASA EOS-Aura), con observaciones terrestres de instrumentos Dobson y SAOZ para el periodo 2004–2019 y 2008–02/2020, respectivamente. Los datos del OMI analizados fueron los invertidos mediante el algoritmo Differential Optical Absorption Spectroscopy (overpass OMI-DOAS). Las 4 estaciones terrestres están ubicadas en latitudes subpolares y subtropicales del Hemisferio Sur, en las ciudades argentinas de Buenos Aires (34,58°S, 58,36°O; 25  m s.n.m.), Comodoro Rivadavia (45,86°S, 67,50°O; 46  m s.n.m.), Río Gallegos (51,60°S, 69,30°O; 72 m s.n.m.) y Ushuaia (54,80°S, 68,30°O; 14 m s.n.m.) cubriendo un rango latitudinal desde los 34°S hasta los 54°S. Los análisis de regresión lineal presentan valores de correlación superior a 0,90. Las mediciones OMI– DOAS muestran una sobrestimación menor al 4 % respecto de los instrumentos Dobson, mientras que la comparación respecto al instrumento SAOZ presenta una muy baja subestimación, menor al 1 %. es_ES
dc.description.sponsorship The authors would like to thank to OAPA, LATMOS / CNRS and SMN for the maintenance of the ground-based ozone observation instruments, WOUDC for providing ground-based data, and NASA for providing OMI data. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista de Teledetección es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Total ozone column es_ES
dc.subject OMI es_ES
dc.subject Dobson es_ES
dc.subject SAOZ es_ES
dc.subject Argentina es_ES
dc.subject Columna total de ozono es_ES
dc.title Comparison of OMI-DOAS total ozone column with ground-based measurements in Argentina es_ES
dc.title.alternative Comparación de columna total de ozono OMI-DOAS con mediciones terrestres en Argentina es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/raet.2020.13673
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Orte, PF.; Luccini, E.; Wolfram, E.; Nollas, F.; Pallotta, J.; D'elia, R.; Carbajal, G.... (2020). Comparison of OMI-DOAS total ozone column with ground-based measurements in Argentina. Revista de Teledetección. 0(57):13-23. https://doi.org/10.4995/raet.2020.13673 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/raet.2020.13673 es_ES
dc.description.upvformatpinicio 13 es_ES
dc.description.upvformatpfin 23 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 0 es_ES
dc.description.issue 57 es_ES
dc.identifier.eissn 1988-8740
dc.relation.pasarela OJS\13673 es_ES
dc.description.references Antón, M., López, M, Vilaplana, J.M., Kroon, M., McPeters, R., Bañón, M., Serrano, A. 2009. Validation of OMI-TOMS and OMI-DOAS total ozone column using five Brewer spectroradiometers at the Iberian Peninsula. J. Geophys. Res., 114, D14307, https://doi.org/10.1029/2009JD012003 es_ES
dc.description.references Balis, D., Kroon, M., Koukouli, M.E., Brinksma, E.J., Labow, G., Veefkind, J.P., McPeters, R.D. 2007. Validation of Ozone Monitoring Instrument total ozone column measurements using Brewer and Dobson spectrophotometer ground-based observations, J. Geophys. Res., 112, D24S46, https://doi.org/10.1029/2007JD008796 es_ES
dc.description.references Banerjee, A., Fyfe, J.C., Polvani, L.M., Waugh, D., Chang, K.L. 2020. A pause in Southern Hemisphere circulation trends due to the Montreal Protocol. Nature, 579, 544-548. https://doi.org/10.1038/ s41586-020-2120-4 es_ES
dc.description.references Basher, R.E. 1982. Ozone absorption coefficients' Role in Dobson instrument ozone measurement accuracy, Geophys. Res. Lett., 9, 11. https://doi.org/10.1029/GL009i011p01235 es_ES
dc.description.references Basher R.E. 1985. Review of the Dobson Spectrophotometer and its Accuracy. In: Zerefos C.S., Ghazi A. (eds) Atmospheric Ozone. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5313- 0_78 es_ES
dc.description.references Bhartia, P.K., Wellemeyer, C. 2002. TOMS-V8 total O3 algorithm, OMI Algorithm Theoretical Basis Document, vol. II, OMI Ozone Products, pp. 15-31, edited by P.K. Bhartia,, NASA Goddard Space Flight Cent., Greenbelt, Md. es_ES
dc.description.references Bian, L., Zhong, L., Zhang, D., Zheng, X., Lu, L. 2012. Validation of total ozone data between satellite and ground-based measurements at Zhongshan and Syowa stations in Antarctica. Adv. Polar Sci., 23, 196- 203. https://doi.org/10.3724/SP.J.1085.2012.00196 es_ES
dc.description.references Brewer, A.W. 1949. Evidence for a world circulation provided by the measurements of helium and water vapor distribution in the stratosphere, Q.J. Roy. Meteor. Soc., 75, 351-363. https://doi.org/10.1002/ qj.49707532603 es_ES
dc.description.references Cañellas, J. 2017. Control de calidad de la serie de Ozono Total de Buenos Aires, Universidad de Buenos Aires, https://doi.org/10.13140/RG.2.2.31527.29601 es_ES
dc.description.references Carbajal Benítez, G., Cupeiro, M., Sánchez, R., Agüero, J.D., Barlasina, M.E., Nollas, F. 2014. Caracterización de la Columna Total de Ozono medido con el Espectrofotómetro Dobson en cuatro estaciones en la Argentina., Actas trabajos completos E-ICES 9, ISBN 978-987-1323-36-4- 1a ed. - Ciudad Autónoma de Buenos Aires: Comisión Nacional de Energía Atómica - CNEA, 2014. 250 p. es_ES
dc.description.references Chubachi, S. 1984. Preliminary result of ozone observations at Syowa Station from February, 1982 to January, 1983, Mem. Natl. Inst. Polar Res. Jpn. Spec., 34, 13-20. https://doi.org/10.1007/978-94-009-5313-0_58 es_ES
dc.description.references Dhomse, S.S., Kinnison, D., Chipperfield, M.P., Salawitch, R.J., Cionni, I., Hegglin, M.I., Abraham, N.L., Akiyoshi, H., Archibald, A.T., Bednarz, E.M., Bekki, S., Braesicke, P., Butchart, N., Dameris, M., Deushi, M., Frith, S., Hardiman, S.C., Hassler, B., Horowitz, L.W., Hu, R.-M., Jöckel, P., Josse, B., Kirner, O., Kremser, S., Langematz, U., Lewis, J., Marchand, M., Lin, M., Mancini, E., Marécal, V., Michou, M., Morgenstern, O., O'Connor, F.M., Oman, L., Pitari, G., Plummer, D.A., Pyle, J.A., Revell, L.E., Rozanov, E., Schofield, R., Stenke, A., Stone, K., Sudo, K., Tilmes, S., Visioni, D., Yamashita, Y., Zeng, G. 2018. Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations, Atmos. Chem. Phys., 18, 8409- 8438, https://doi.org/10.5194/acp-18-8409-2018 es_ES
dc.description.references Dhomse, S.S., Feng, W., Montzka, S.A., Hossaini, R., Keeble, J., Pyle, J.A., Daniel, J.S., Cipperfield, M.P. 2019. Delay in recovery of the Antarctic ozone hole from unexpected CFC-11 emissions. Nat. Commun. 10, 5781. https://doi.org/10.1038/s41467-019- 13717-x es_ES
dc.description.references Dobson, G.M.B. 1931. A photoelectric spectrophotometer for measuring the amount of atmospheric ozone, Proc. Phys. Soc. 43, 324. https://doi.org/10.1088/0959-5309/43/3/308 es_ES
dc.description.references Dobson, G.M.B., Harrison, D.N. 1926. Measurements of the amount of ozone in the earth's atmosphere and its relation to other geophysical conditions, Proc. Roy. Soc. London, A110, 660. https://doi.org/10.1098/rspa.1926.0040 es_ES
dc.description.references Dobson, G.M.B. 1956. Origin and distribution of polyatomic molecules in the atmosphere, Proc. R. Soc. A, 236, 187-193. https://doi.org/10.1098/ rspa.1956.0127 es_ES
dc.description.references Evans R.D. 2009. Operations Handbook - Ozone observations with a Dobson spectrophotometer: revised 2008, World Meteorological Organization TD-No. 1469; GAW Report- No. 183. es_ES
dc.description.references Farman, J.C., Gardiner, B.G., Shanklin, J.D. 1985. Large losses of total ozone in Antarctica reveal seasonal ClOx/NO interaction, Nature, 315, 207- 210. https://doi.org/10.1038/315207a0 es_ES
dc.description.references Hendrick, F., Pommereau, J.P., Goutail, F., Evans, R.D., Ionov, D., Pazmino, A., Kyrö, E., Held, G., Eriksen, P., Dorokhov, V., Gil, M., Van Roozendael, M. 2011. NDACC/SAOZ UV-visible total ozone measurements: improved retrieval and comparison with correlative ground-based and satellite observations, Atmos. Chem. Phys., 11, 5975-5995, https://doi.org/10.5194/acp11-5975-2011 es_ES
dc.description.references Kim, J., Kim, J., Cho, H.K., Herman, J., Park, S.S., Lim, H.K., Kim, J.H., Miyagawa, K., Lee, Y.G. 2017. Intercomparison of total column ozone data from the Pandora spectrophotometer with Dobson, Brewer, and OMI measurements over Seoul, Korea, Atmos. Meas. Tech., 10, 3661-3676. https://doi.org/10.5194/amt-10-3661-2017 es_ES
dc.description.references Kuttippurath, J., Nair, P.J. 2017. The signs of Antarctic ozone hole recovery. Sci. Rep., 7, 585. https://doi.org/10.1038/s41598-017-00722-7 es_ES
dc.description.references Kuttippurath, J., Kumar, P., Nair, P.J., Chakraborty, A. 2018. Accuracy of satellite total column ozone measurements in polar vortex conditions: Comparison with ground-based observations in 1979-2013. Remote Sens. Environ., 209, 648-659. https://doi.org/10.1016/j.rse.2018.02.054 es_ES
dc.description.references Levelt, P.F., Hilsenrath, E., Leppelmeier, G.W., Van den Oord, G.H.J., Bhartia, P.K., Tamminen, J., De Haan, J.F., Veefkind, J.P. 2006. The Ozone Monitoring Instrument, IEEE T. Geosci. Remote Sens., 44, 1093- 1101. https://doi.org/10.1109/TGRS.2006.872336 es_ES
dc.description.references London, J. 1985. The observed distribution of atmospheric ozone and its variations, ozone in the free atmosphere, edited by: Whitten, R.C. and Prasad, S.S., New York, Van Nostrand Reinhold, chap. 1, 11-80. es_ES
dc.description.references McLandress, C., Shepherd, T.G., Scinocca, J.F., Plummer, D.A., Sigmond, M., Jonsson, A.I., Reader, M.C. 2011. Separating the dynamical effects of climate change and ozone depletion. Part II: Southern Hemisphere troposphere. J. Clim., 24, 1850-1868. https://doi.org/10.1175/2010JCLI3958.1 es_ES
dc.description.references McPeters, R., Kroon, M., Labow, G., Brinksma, E., Balis, D., Petropavlovskikh, I., Veefkind, J.P., Bhartia, P.K., Levelt, P.F. 2008. Validation of the Aura Ozone Monitoring Instrument total column ozone product, J. Geophys. Res., 113, D15S14, https://doi.org/10.1029/2007JD008802 es_ES
dc.description.references Moeini, O., Vaziri Zanjani, Z., McElroy, C.T., Tarasick, D.W., Evans, R.D., Petropavlovskikh, I., Feng, K.H. 2019. The effect of instrumental stray light on Brewer and Dobson total ozone measurements, Atmos. Meas. Tech., 12, 327-343. https://doi.org/10.5194/amt-12-327-2019. es_ES
dc.description.references Orte, P.F., Salvador, J., Wolfram, E., D'Elia, R., Nagahama, T., Kojima, Y., Tanada, R., Kuwahara, T., Morihira, A., Quel, E., Mizuno, A. 2011. Millimeter wave radiometer installation in Río Gallegos, southern Argentina, Int. Conf. on Applications of Opt. and Photonics, edited by: Costa, M.F.M., Vol. 8001, Proceedings of SPIE, https://doi.org/10.1117/12.894578 es_ES
dc.description.references Orte, P.F., Wolfram, E., Salvador, J., Mizuno, A., Bègue, N., Bencherif, H., Bali, J.L., D'Elia, R., Pazmiño, A., Godin-Beekmann, S., Ohyama, H., Quiroga, J. 2019. Analysis of a southern subpolar short-term ozone variation event using a millimetrewave radiometer, Ann. Geophys., 37, 613-629. https://doi.org/10.5194/angeo-37-613-2019 es_ES
dc.description.references Pazmiño A. 2010. O3 and NO2 vertical columns using SAOZ UV-Visible spectrometer. EPJ Web of Conferences, EDP Sciences, 2010, 9, pp.201-214. https://doi.org/10.1051/epjconf/201009016 es_ES
dc.description.references Polvani, L.M., Waugh, D.W., Correa, G.J.P., Son, S.W. 2011. Stratospheric ozone depletion: the main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Clim. 24, 795-812. https://doi.org/10.1175/2010JCLI3772.1 es_ES
dc.description.references GAW report, 2019. Region III, International Comparison of Dobson of Spectrophotometers, Villa Ortuzar Observatory, Argentina, 2019. SMN, WMO. https://public.wmo.int/en/events/meetings/regional-2019- latin-american-dobson-intercomparison-campaign es_ES
dc.description.references Salvador, J.O. 2011. Estudio del comportamiento de la capa de ozono y la radiación UV en la Patagonia Austral y su proyección hacia la comunidad, Tesis de doctorado, UTN-FRBA. es_ES
dc.description.references Salvador, J., Wolfram, E., Orte, F., D'Elia, R., Bulnes, D., Quel, E. 2013. Observations of UV radiation and total ozone column using ground based instruments in Río Gallegos, Argentina (51° 36' S, 69° 19' W). AIP Conference Proceedings, 364-367, 1531. https://doi.org/10.1063/1.4804782 es_ES
dc.description.references Solomon, S., Ivy, D.J., Kinnison, D., Mills, M.J., Neely, R.R., Schmidt, A. 2016. Emergence of healing in the Antarctic ozone layer, Science, 353, 269-274, https://doi.org/10.1126/science.aae0061 es_ES
dc.description.references Son, S.W., Gerber, E.P., Perlwitz, J., Polvani, L.M., Gillett, N.P., Seo, K.H., ... Austin, J. 2010. Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment, J. Geophys. Res., 115, D00M07, https://doi.org/10.1029/2010JD014271 es_ES
dc.description.references Stolarski, R.S., Krueger, A.J., Schoeberl, M.R., McPeters, R.D., Newman, P.A., Albert, J.C. 1986. Nimbus 7 SBUV/TOMS measurements of the springtime antarctic ozone hole. Nature, p. 811. https://doi.org/10.1038/322808a0 es_ES
dc.description.references Vaz Peres, L., Bencherif, H., Mbatha, N., Passaglia Schuch, A., Toihir, A.M., Bègue, N., Portafaix, T., Anabor, V., Kirsch Pinheiro, D., Paes Leme, N.M., Bageston, J.V., Schuch, N.J. 2017. Measurements of the total ozone column using a Brewer spectrophotometer and TOMS and OMI satellite instruments over the Southern Space Observatory in Brazil, Ann. Geophys., 35, 25-37. https://doi.org/10.5194/angeo-35-25-2017 es_ES
dc.description.references Veefkind, J.P., de Haan, J.F., Brinksma, E.J., Kroon, M., Levell, P.F. 2006. Total Ozone from the Ozone Monitoring Instrument (OMI) using the DOAS technique, IEEE Trans. Geosci. Remote Sens., 44, 1239-1244. https://doi.org/10.1109/TGRS.2006.871204 es_ES
dc.description.references Wolfram, A.E., Salvador, J., D'Elia, R., Casiccia, C., Leme, N.P., Pazmiño, A., Porteneuve, J., Godin-Beekman, S., Nakane, H., Quel, E.J. 2008. New Differential absorption lidar for stratospheric ozone monitoring in Patagonia, south Argentina, J. Opt. A, 10, 589 595. https://doi.org/10.1088/1464-4258/10/10/104021 es_ES
dc.description.references Wolfram, E.A., Salvador, J., Orte, F., D'Elia, R., Godin-Beekmann, S., Kuttippurath, J., Pazmiño, A., Goutail, F., Casiccia, C., Zamorano, F., Paes Leme, N., Quel, E.J. 2012. The unusual persistence of an ozone hole over a southern mid-latitude station during the Antarctic spring 2009: a multiinstrument study, Ann. Geophys., 30, 1435-1449. https://doi.org/10.5194/angeo-30-1435-2012 es_ES
dc.description.references World Meteorological Organization (WMO). 2018. Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring ProjectReport No. 58. es_ES
dc.description.references World Meteorological Organization (WMO). 2010. Scientific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring ProjectReport No. 52, Geneva, Switzerland, 2011. es_ES
dc.description.references World Meteorological Organization (WMO): Scientific Assessment of Ozone Depletion: 2014 Global Ozone Research and Monitoring Project Report, World Meteorological Organization, Geneva, Switzerland, p. 416, 2014. es_ES
dc.description.references Zerefos C. 1997 Factors Influencing the Transmission of Solar Ultraviolet Irradiance through the Earth's Atmosphere. In: Zerefos C.S., Bais A.F. (eds) Solar Ultraviolet Radiation. NATO ASI Series (Series I: Global Environmental Change), vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03375-3_9 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem