Antón, M., López, M, Vilaplana, J.M., Kroon, M., McPeters, R., Bañón, M., Serrano, A. 2009. Validation of OMI-TOMS and OMI-DOAS total ozone column using five Brewer spectroradiometers at the Iberian Peninsula. J. Geophys. Res., 114, D14307, https://doi.org/10.1029/2009JD012003
Balis, D., Kroon, M., Koukouli, M.E., Brinksma, E.J., Labow, G., Veefkind, J.P., McPeters, R.D. 2007. Validation of Ozone Monitoring Instrument total ozone column measurements using Brewer and Dobson spectrophotometer ground-based observations, J. Geophys. Res., 112, D24S46, https://doi.org/10.1029/2007JD008796
Banerjee, A., Fyfe, J.C., Polvani, L.M., Waugh, D., Chang, K.L. 2020. A pause in Southern Hemisphere circulation trends due to the Montreal Protocol. Nature, 579, 544-548. https://doi.org/10.1038/ s41586-020-2120-4
[+]
Antón, M., López, M, Vilaplana, J.M., Kroon, M., McPeters, R., Bañón, M., Serrano, A. 2009. Validation of OMI-TOMS and OMI-DOAS total ozone column using five Brewer spectroradiometers at the Iberian Peninsula. J. Geophys. Res., 114, D14307, https://doi.org/10.1029/2009JD012003
Balis, D., Kroon, M., Koukouli, M.E., Brinksma, E.J., Labow, G., Veefkind, J.P., McPeters, R.D. 2007. Validation of Ozone Monitoring Instrument total ozone column measurements using Brewer and Dobson spectrophotometer ground-based observations, J. Geophys. Res., 112, D24S46, https://doi.org/10.1029/2007JD008796
Banerjee, A., Fyfe, J.C., Polvani, L.M., Waugh, D., Chang, K.L. 2020. A pause in Southern Hemisphere circulation trends due to the Montreal Protocol. Nature, 579, 544-548. https://doi.org/10.1038/ s41586-020-2120-4
Basher, R.E. 1982. Ozone absorption coefficients' Role in Dobson instrument ozone measurement accuracy, Geophys. Res. Lett., 9, 11. https://doi.org/10.1029/GL009i011p01235
Basher R.E. 1985. Review of the Dobson Spectrophotometer and its Accuracy. In: Zerefos C.S., Ghazi A. (eds) Atmospheric Ozone. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5313- 0_78
Bhartia, P.K., Wellemeyer, C. 2002. TOMS-V8 total O3 algorithm, OMI Algorithm Theoretical Basis Document, vol. II, OMI Ozone Products, pp. 15-31, edited by P.K. Bhartia,, NASA Goddard Space Flight Cent., Greenbelt, Md.
Bian, L., Zhong, L., Zhang, D., Zheng, X., Lu, L. 2012. Validation of total ozone data between satellite and ground-based measurements at Zhongshan and Syowa stations in Antarctica. Adv. Polar Sci., 23, 196- 203. https://doi.org/10.3724/SP.J.1085.2012.00196
Brewer, A.W. 1949. Evidence for a world circulation provided by the measurements of helium and water vapor distribution in the stratosphere, Q.J. Roy. Meteor. Soc., 75, 351-363. https://doi.org/10.1002/ qj.49707532603
Cañellas, J. 2017. Control de calidad de la serie de Ozono Total de Buenos Aires, Universidad de Buenos Aires, https://doi.org/10.13140/RG.2.2.31527.29601
Carbajal Benítez, G., Cupeiro, M., Sánchez, R., Agüero, J.D., Barlasina, M.E., Nollas, F. 2014. Caracterización de la Columna Total de Ozono medido con el Espectrofotómetro Dobson en cuatro estaciones en la Argentina., Actas trabajos completos E-ICES 9, ISBN 978-987-1323-36-4- 1a ed. - Ciudad Autónoma de Buenos Aires: Comisión Nacional de Energía Atómica - CNEA, 2014. 250 p.
Chubachi, S. 1984. Preliminary result of ozone observations at Syowa Station from February, 1982 to January, 1983, Mem. Natl. Inst. Polar Res. Jpn. Spec., 34, 13-20. https://doi.org/10.1007/978-94-009-5313-0_58
Dhomse, S.S., Kinnison, D., Chipperfield, M.P., Salawitch, R.J., Cionni, I., Hegglin, M.I., Abraham, N.L., Akiyoshi, H., Archibald, A.T., Bednarz, E.M., Bekki, S., Braesicke, P., Butchart, N., Dameris, M., Deushi, M., Frith, S., Hardiman, S.C., Hassler, B., Horowitz, L.W., Hu, R.-M., Jöckel, P., Josse, B., Kirner, O., Kremser, S., Langematz, U., Lewis, J., Marchand, M., Lin, M., Mancini, E., Marécal, V., Michou, M., Morgenstern, O., O'Connor, F.M., Oman, L., Pitari, G., Plummer, D.A., Pyle, J.A., Revell, L.E., Rozanov, E., Schofield, R., Stenke, A., Stone, K., Sudo, K., Tilmes, S., Visioni, D., Yamashita, Y., Zeng, G. 2018. Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations, Atmos. Chem. Phys., 18, 8409- 8438, https://doi.org/10.5194/acp-18-8409-2018
Dhomse, S.S., Feng, W., Montzka, S.A., Hossaini, R., Keeble, J., Pyle, J.A., Daniel, J.S., Cipperfield, M.P. 2019. Delay in recovery of the Antarctic ozone hole from unexpected CFC-11 emissions. Nat. Commun. 10, 5781. https://doi.org/10.1038/s41467-019- 13717-x
Dobson, G.M.B. 1931. A photoelectric spectrophotometer for measuring the amount of atmospheric ozone, Proc. Phys. Soc. 43, 324. https://doi.org/10.1088/0959-5309/43/3/308
Dobson, G.M.B., Harrison, D.N. 1926. Measurements of the amount of ozone in the earth's atmosphere and its relation to other geophysical conditions, Proc. Roy. Soc. London, A110, 660. https://doi.org/10.1098/rspa.1926.0040
Dobson, G.M.B. 1956. Origin and distribution of polyatomic molecules in the atmosphere, Proc. R. Soc. A, 236, 187-193. https://doi.org/10.1098/ rspa.1956.0127
Evans R.D. 2009. Operations Handbook - Ozone observations with a Dobson spectrophotometer: revised 2008, World Meteorological Organization TD-No. 1469; GAW Report- No. 183.
Farman, J.C., Gardiner, B.G., Shanklin, J.D. 1985. Large losses of total ozone in Antarctica reveal seasonal ClOx/NO interaction, Nature, 315, 207- 210. https://doi.org/10.1038/315207a0
Hendrick, F., Pommereau, J.P., Goutail, F., Evans, R.D., Ionov, D., Pazmino, A., Kyrö, E., Held, G., Eriksen, P., Dorokhov, V., Gil, M., Van Roozendael, M. 2011. NDACC/SAOZ UV-visible total ozone measurements: improved retrieval and comparison with correlative ground-based and satellite observations, Atmos. Chem. Phys., 11, 5975-5995, https://doi.org/10.5194/acp11-5975-2011
Kim, J., Kim, J., Cho, H.K., Herman, J., Park, S.S., Lim, H.K., Kim, J.H., Miyagawa, K., Lee, Y.G. 2017. Intercomparison of total column ozone data from the Pandora spectrophotometer with Dobson, Brewer, and OMI measurements over Seoul, Korea, Atmos. Meas. Tech., 10, 3661-3676. https://doi.org/10.5194/amt-10-3661-2017
Kuttippurath, J., Nair, P.J. 2017. The signs of Antarctic ozone hole recovery. Sci. Rep., 7, 585. https://doi.org/10.1038/s41598-017-00722-7
Kuttippurath, J., Kumar, P., Nair, P.J., Chakraborty, A. 2018. Accuracy of satellite total column ozone measurements in polar vortex conditions: Comparison with ground-based observations in 1979-2013. Remote Sens. Environ., 209, 648-659. https://doi.org/10.1016/j.rse.2018.02.054
Levelt, P.F., Hilsenrath, E., Leppelmeier, G.W., Van den Oord, G.H.J., Bhartia, P.K., Tamminen, J., De Haan, J.F., Veefkind, J.P. 2006. The Ozone Monitoring Instrument, IEEE T. Geosci. Remote Sens., 44, 1093- 1101. https://doi.org/10.1109/TGRS.2006.872336
London, J. 1985. The observed distribution of atmospheric ozone and its variations, ozone in the free atmosphere, edited by: Whitten, R.C. and Prasad, S.S., New York, Van Nostrand Reinhold, chap. 1, 11-80.
McLandress, C., Shepherd, T.G., Scinocca, J.F., Plummer, D.A., Sigmond, M., Jonsson, A.I., Reader, M.C. 2011. Separating the dynamical effects of climate change and ozone depletion. Part II: Southern Hemisphere troposphere. J. Clim., 24, 1850-1868. https://doi.org/10.1175/2010JCLI3958.1
McPeters, R., Kroon, M., Labow, G., Brinksma, E., Balis, D., Petropavlovskikh, I., Veefkind, J.P., Bhartia, P.K., Levelt, P.F. 2008. Validation of the Aura Ozone Monitoring Instrument total column ozone product, J. Geophys. Res., 113, D15S14, https://doi.org/10.1029/2007JD008802
Moeini, O., Vaziri Zanjani, Z., McElroy, C.T., Tarasick, D.W., Evans, R.D., Petropavlovskikh, I., Feng, K.H. 2019. The effect of instrumental stray light on Brewer and Dobson total ozone measurements, Atmos. Meas. Tech., 12, 327-343. https://doi.org/10.5194/amt-12-327-2019.
Orte, P.F., Salvador, J., Wolfram, E., D'Elia, R., Nagahama, T., Kojima, Y., Tanada, R., Kuwahara, T., Morihira, A., Quel, E., Mizuno, A. 2011. Millimeter wave radiometer installation in Río Gallegos, southern Argentina, Int. Conf. on Applications of Opt. and Photonics, edited by: Costa, M.F.M., Vol. 8001, Proceedings of SPIE, https://doi.org/10.1117/12.894578
Orte, P.F., Wolfram, E., Salvador, J., Mizuno, A., Bègue, N., Bencherif, H., Bali, J.L., D'Elia, R., Pazmiño, A., Godin-Beekmann, S., Ohyama, H., Quiroga, J. 2019. Analysis of a southern subpolar short-term ozone variation event using a millimetrewave radiometer, Ann. Geophys., 37, 613-629. https://doi.org/10.5194/angeo-37-613-2019
Pazmiño A. 2010. O3 and NO2 vertical columns using SAOZ UV-Visible spectrometer. EPJ Web of Conferences, EDP Sciences, 2010, 9, pp.201-214. https://doi.org/10.1051/epjconf/201009016
Polvani, L.M., Waugh, D.W., Correa, G.J.P., Son, S.W. 2011. Stratospheric ozone depletion: the main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Clim. 24, 795-812. https://doi.org/10.1175/2010JCLI3772.1
GAW report, 2019. Region III, International Comparison of Dobson of Spectrophotometers, Villa Ortuzar Observatory, Argentina, 2019. SMN, WMO. https://public.wmo.int/en/events/meetings/regional-2019- latin-american-dobson-intercomparison-campaign
Salvador, J.O. 2011. Estudio del comportamiento de la capa de ozono y la radiación UV en la Patagonia Austral y su proyección hacia la comunidad, Tesis de doctorado, UTN-FRBA.
Salvador, J., Wolfram, E., Orte, F., D'Elia, R., Bulnes, D., Quel, E. 2013. Observations of UV radiation and total ozone column using ground based instruments in Río Gallegos, Argentina (51° 36' S, 69° 19' W). AIP Conference Proceedings, 364-367, 1531. https://doi.org/10.1063/1.4804782
Solomon, S., Ivy, D.J., Kinnison, D., Mills, M.J., Neely, R.R., Schmidt, A. 2016. Emergence of healing in the Antarctic ozone layer, Science, 353, 269-274, https://doi.org/10.1126/science.aae0061
Son, S.W., Gerber, E.P., Perlwitz, J., Polvani, L.M., Gillett, N.P., Seo, K.H., ... Austin, J. 2010. Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment, J. Geophys. Res., 115, D00M07, https://doi.org/10.1029/2010JD014271
Stolarski, R.S., Krueger, A.J., Schoeberl, M.R., McPeters, R.D., Newman, P.A., Albert, J.C. 1986. Nimbus 7 SBUV/TOMS measurements of the springtime antarctic ozone hole. Nature, p. 811. https://doi.org/10.1038/322808a0
Vaz Peres, L., Bencherif, H., Mbatha, N., Passaglia Schuch, A., Toihir, A.M., Bègue, N., Portafaix, T., Anabor, V., Kirsch Pinheiro, D., Paes Leme, N.M., Bageston, J.V., Schuch, N.J. 2017. Measurements of the total ozone column using a Brewer spectrophotometer and TOMS and OMI satellite instruments over the Southern Space Observatory in Brazil, Ann. Geophys., 35, 25-37. https://doi.org/10.5194/angeo-35-25-2017
Veefkind, J.P., de Haan, J.F., Brinksma, E.J., Kroon, M., Levell, P.F. 2006. Total Ozone from the Ozone Monitoring Instrument (OMI) using the DOAS technique, IEEE Trans. Geosci. Remote Sens., 44, 1239-1244. https://doi.org/10.1109/TGRS.2006.871204
Wolfram, A.E., Salvador, J., D'Elia, R., Casiccia, C., Leme, N.P., Pazmiño, A., Porteneuve, J., Godin-Beekman, S., Nakane, H., Quel, E.J. 2008. New Differential absorption lidar for stratospheric ozone monitoring in Patagonia, south Argentina, J. Opt. A, 10, 589 595. https://doi.org/10.1088/1464-4258/10/10/104021
Wolfram, E.A., Salvador, J., Orte, F., D'Elia, R., Godin-Beekmann, S., Kuttippurath, J., Pazmiño, A., Goutail, F., Casiccia, C., Zamorano, F., Paes Leme, N., Quel, E.J. 2012. The unusual persistence of an ozone hole over a southern mid-latitude station during the Antarctic spring 2009: a multiinstrument study, Ann. Geophys., 30, 1435-1449. https://doi.org/10.5194/angeo-30-1435-2012
World Meteorological Organization (WMO). 2018. Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring ProjectReport No. 58.
World Meteorological Organization (WMO). 2010. Scientific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring ProjectReport No. 52, Geneva, Switzerland, 2011.
World Meteorological Organization (WMO): Scientific Assessment of Ozone Depletion: 2014 Global Ozone Research and Monitoring Project Report, World Meteorological Organization, Geneva, Switzerland, p. 416, 2014.
Zerefos C. 1997 Factors Influencing the Transmission of Solar Ultraviolet Irradiance through the Earth's Atmosphere. In: Zerefos C.S., Bais A.F. (eds) Solar Ultraviolet Radiation. NATO ASI Series (Series I: Global Environmental Change), vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03375-3_9
[-]