Mostrar el registro sencillo del ítem
dc.contributor.author | Cerdá-Moreno, Cristina | es_ES |
dc.contributor.author | Da Costa Serra, Javier Francisco | es_ES |
dc.contributor.author | Chica, Antonio | es_ES |
dc.date.accessioned | 2021-01-21T04:32:00Z | |
dc.date.available | 2021-01-21T04:32:00Z | |
dc.date.issued | 2019-05-17 | es_ES |
dc.identifier.issn | 0360-3199 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/159607 | |
dc.description.abstract | [EN] Four samples of Zn-hydrotalcite containing different amounts of Co (5, 10, 20, and 30 wt%) have been synthesized and tested in the steam reforming of ethanol. The best results were obtained with the sample containing 20 wt% of Co (20CoHT), with a complete conversion of ethanol and yields to hydrogen close to the equilibrium (73 mol.%). The physicochemical characterization of the samples by DRX, BET area and TPR indicates that the excellent performance exhibited by the sample containing 20 wt% of Co is due to the higher percentage of reduced cobalt and lower crystallite size of metallic cobalt present in this sample (11 nm). Additional studies have been carried out to improve the stability of this catalytic material against deactivation by the incorporation of 1 wt% of La. Stability studies were carried out using an industrial alcoholic waste as feed. Deactivation after 24 h of reaction time was found lower for the catalyst containing La (20CoLaHT), confirming the positive effect of lanthanum on the catalytic stability. The results presented here show that it is possible to prepare a catalyst based on Co supported on Zn-hydrotalcite and promoted with La with improved ethanol conversion, high hydrogen selectivity, and high stability to produce hydrogen by the steam reforming of an industrial alcoholic waste without commercial value. | es_ES |
dc.description.sponsorship | Cristina Cerda-Moreno acknowledges the financial support from the Spanish Government through predoctoral training fellowships for "Centros de Excelencia Severo Ochoa" (SEV-2016-0683). The doctor Javier Francisco Da Costa Serra wants to have some words of thanks toward CSIC for granted the scholarship predoctoral-JAE-CSIC. We also thanks to Destilerias San Valero for supplying us the samples of the alcoholic wastes used in this work. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | International Journal of Hydrogen Energy | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Ethanol steam reforming | es_ES |
dc.subject | Hydrogen production | es_ES |
dc.subject | Hydrotalcite | es_ES |
dc.subject | LDHs | es_ES |
dc.subject | Cobalt catalyst | es_ES |
dc.subject | Alcoholic waste | es_ES |
dc.title | Co and La supported on Zn-Hydrotalcite-derived material as efficient catalyst for ethanol steam reforming | es_ES |
dc.type | Artículo | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.1016/j.ijhydene.2019.01.156 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.description.bibliographicCitation | Cerdá-Moreno, C.; Da Costa Serra, JF.; Chica, A. (2019). Co and La supported on Zn-Hydrotalcite-derived material as efficient catalyst for ethanol steam reforming. International Journal of Hydrogen Energy. 44(25):12685-12692. https://doi.org/10.1016/j.ijhydene.2019.01.156 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | European Hydrogen Energy Conference (EHEC 2018) | es_ES |
dc.relation.conferencedate | Marzo 14-16,2018 | es_ES |
dc.relation.conferenceplace | Málaga, Spain | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.ijhydene.2019.01.156 | es_ES |
dc.description.upvformatpinicio | 12685 | es_ES |
dc.description.upvformatpfin | 12692 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 44 | es_ES |
dc.description.issue | 25 | es_ES |
dc.relation.pasarela | S\377704 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Consejo Superior de Investigaciones Científicas | es_ES |
dc.description.references | Liguras, D. K., Kondarides, D. I., & Verykios, X. E. (2003). Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. Applied Catalysis B: Environmental, 43(4), 345-354. doi:10.1016/s0926-3373(02)00327-2 | es_ES |
dc.description.references | Da Silva Veras, T., Mozer, T. S., da Costa Rubim Messeder dos Santos, D., & da Silva César, A. (2017). Hydrogen: Trends, production and characterization of the main process worldwide. International Journal of Hydrogen Energy, 42(4), 2018-2033. doi:10.1016/j.ijhydene.2016.08.219 | es_ES |
dc.description.references | Muradov, N. (2017). Low to near-zero CO2 production of hydrogen from fossil fuels: Status and perspectives. International Journal of Hydrogen Energy, 42(20), 14058-14088. doi:10.1016/j.ijhydene.2017.04.101 | es_ES |
dc.description.references | Ma, F., & Hanna, M. A. (1999). Biodiesel production: a review1Journal Series #12109, Agricultural Research Division, Institute of Agriculture and Natural Resources, University of Nebraska–Lincoln.1. Bioresource Technology, 70(1), 1-15. doi:10.1016/s0960-8524(99)00025-5 | es_ES |
dc.description.references | Maggio, G., Freni, S., & Cavallaro, S. (1998). Light alcohols/methane fuelled molten carbonate fuel cells: a comparative study. Journal of Power Sources, 74(1), 17-23. doi:10.1016/s0378-7753(98)00003-2 | es_ES |
dc.description.references | F. Brown, L. (2001). A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles. International Journal of Hydrogen Energy, 26(4), 381-397. doi:10.1016/s0360-3199(00)00092-6 | es_ES |
dc.description.references | Ni, M., Leung, D. Y. C., Leung, M. K. H., & Sumathy, K. (2006). An overview of hydrogen production from biomass. Fuel Processing Technology, 87(5), 461-472. doi:10.1016/j.fuproc.2005.11.003 | es_ES |
dc.description.references | Haryanto, A., Fernando, S., Murali, N., & Adhikari, S. (2005). Current Status of Hydrogen Production Techniques by Steam Reforming of Ethanol: A Review. Energy & Fuels, 19(5), 2098-2106. doi:10.1021/ef0500538 | es_ES |
dc.description.references | Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098. doi:10.1021/cr068360d | es_ES |
dc.description.references | Ni, M., Leung, D. Y. C., & Leung, M. K. H. (2007). A review on reforming bio-ethanol for hydrogen production. International Journal of Hydrogen Energy, 32(15), 3238-3247. doi:10.1016/j.ijhydene.2007.04.038 | es_ES |
dc.description.references | Comas, J., Mariño, F., Laborde, M., & Amadeo, N. (2004). Bio-ethanol steam reforming on Ni/Al2O3 catalyst. Chemical Engineering Journal, 98(1-2), 61-68. doi:10.1016/s1385-8947(03)00186-4 | es_ES |
dc.description.references | Fierro, V., Akdim, O., Provendier, H., & Mirodatos, C. (2005). Ethanol oxidative steam reforming over Ni-based catalysts. Journal of Power Sources, 145(2), 659-666. doi:10.1016/j.jpowsour.2005.02.041 | es_ES |
dc.description.references | Mattos, L. V., Jacobs, G., Davis, B. H., & Noronha, F. B. (2012). Production of Hydrogen from Ethanol: Review of Reaction Mechanism and Catalyst Deactivation. Chemical Reviews, 112(7), 4094-4123. doi:10.1021/cr2000114 | es_ES |
dc.description.references | Sun, J., & Wang, Y. (2014). Recent Advances in Catalytic Conversion of Ethanol to Chemicals. ACS Catalysis, 4(4), 1078-1090. doi:10.1021/cs4011343 | es_ES |
dc.description.references | LeValley, T. L., Richard, A. R., & Fan, M. (2014). The progress in water gas shift and steam reforming hydrogen production technologies – A review. International Journal of Hydrogen Energy, 39(30), 16983-17000. doi:10.1016/j.ijhydene.2014.08.041 | es_ES |
dc.description.references | Contreras, J. L., Salmones, J., Colín-Luna, J. A., Nuño, L., Quintana, B., Córdova, I., … Fuentes, G. A. (2014). Catalysts for H 2 production using the ethanol steam reforming (a review). International Journal of Hydrogen Energy, 39(33), 18835-18853. doi:10.1016/j.ijhydene.2014.08.072 | es_ES |
dc.description.references | DELAPENAOSHEA, V., NAFRIA, R., RAMIREZDELAPISCINA, P., & HOMS, N. (2008). Development of robust Co-based catalysts for the selective H2-production by ethanol steam-reforming. The Fe-promoter effect. International Journal of Hydrogen Energy, 33(13), 3601-3606. doi:10.1016/j.ijhydene.2007.10.049 | es_ES |
dc.description.references | Da Costa-Serra, J. F., & Chica, A. (2011). Bioethanol steam reforming on Co/ITQ-18 catalyst: Effect of the crystalline structure of the delaminated zeolite ITQ-18. International Journal of Hydrogen Energy, 36(6), 3862-3869. doi:10.1016/j.ijhydene.2010.12.094 | es_ES |
dc.description.references | Palma, V., Castaldo, F., Ciambelli, P., Iaquaniello, G., & Capitani, G. (2013). On the activity of bimetallic catalysts for ethanol steam reforming. International Journal of Hydrogen Energy, 38(16), 6633-6645. doi:10.1016/j.ijhydene.2013.03.089 | es_ES |
dc.description.references | Yu, S.-W., Huang, H.-H., Tang, C.-W., & Wang, C.-B. (2014). The effect of accessible oxygen over Co3O4–CeO2 catalysts on the steam reforming of ethanol. International Journal of Hydrogen Energy, 39(35), 20700-20711. doi:10.1016/j.ijhydene.2014.07.139 | es_ES |
dc.description.references | Ando, Y., & Matsuoka, K. (2016). Role of Fe in Co–Fe particle catalysts for suppressing CH4 production during ethanol steam reforming for hydrogen production. International Journal of Hydrogen Energy, 41(30), 12862-12868. doi:10.1016/j.ijhydene.2016.06.059 | es_ES |
dc.description.references | European Wine: a solid pillar of the European Union economy. In: Vins– CCEdE, editor. http://www.ceev.eu/about-the-eu-wine-sector2016. | es_ES |
dc.description.references | Li, D., Cai, Y., Ding, Y., Li, R., Lu, M., & Jiang, L. (2015). Layered double hydroxides as precursors of Cu catalysts for hydrogen production by water-gas shift reaction. International Journal of Hydrogen Energy, 40(32), 10016-10025. doi:10.1016/j.ijhydene.2015.05.183 | es_ES |
dc.description.references | Zhang, L., Hui, K. N., Hui, K. S., Chen, X., Chen, R., & Lee, H. (2016). Role of graphene on hierarchical flower-like NiAl layered double hydroxide-nickel foam-graphene as binder-free electrode for high-rate hybrid supercapacitor. International Journal of Hydrogen Energy, 41(22), 9443-9453. doi:10.1016/j.ijhydene.2016.04.050 | es_ES |
dc.description.references | Eshghi, A., & kheirmand, M. (2017). Graphene/Ni–Fe layered double hydroxide nano composites as advanced electrode materials for glucose electro oxidation. International Journal of Hydrogen Energy, 42(22), 15064-15072. doi:10.1016/j.ijhydene.2017.04.288 | es_ES |
dc.description.references | Mostajeran, M., Prévot, V., Mal, S. S., Mattiussi, E., Davis, B. R., & Baker, R. T. (2017). Base-metal catalysts based on porous layered double hydroxides for alkaline-free sodium borohydride hydrolysis. International Journal of Hydrogen Energy, 42(31), 20092-20102. doi:10.1016/j.ijhydene.2017.06.007 | es_ES |
dc.description.references | Di Vona, M. L., Casciola, M., Donnadio, A., Nocchetti, M., Pasquini, L., Narducci, R., & Knauth, P. (2017). Anionic conducting composite membranes based on aromatic polymer and layered double hydroxides. International Journal of Hydrogen Energy, 42(5), 3197-3205. doi:10.1016/j.ijhydene.2016.11.030 | es_ES |
dc.description.references | Li, R., Xu, J., Ba, J., Li, Y., Liang, C., & Tang, T. (2018). Facile synthesis of nanometer-sized NiFe layered double hydroxide/nitrogen-doped graphite foam hybrids for enhanced electrocatalytic oxygen evolution reactions. International Journal of Hydrogen Energy, 43(16), 7956-7963. doi:10.1016/j.ijhydene.2018.03.067 | es_ES |
dc.description.references | Shahrokhian, S., Rahimi, S., & Mohammadi, R. (2018). Nickel-cobalt layered double hydroxide ultrathin nanosheets coated on reduced graphene oxide nonosheets/nickel foam for high performance asymmetric supercapacitors. International Journal of Hydrogen Energy, 43(4), 2256-2267. doi:10.1016/j.ijhydene.2017.12.019 | es_ES |
dc.description.references | Dong, X., Zhang, Y., Ding, B., Hao, X., Dou, H., & Zhang, X. (2018). Layer-by-layer self-assembled two-dimensional MXene/layered double hydroxide composites as cathode for alkaline hybrid batteries. Journal of Power Sources, 390, 208-214. doi:10.1016/j.jpowsour.2018.04.058 | es_ES |
dc.description.references | Ma, Y., Wang, Y., Xie, D., Gu, Y., Zhu, X., Zhang, H., … Zhao, H. (2018). Hierarchical MgFe-layered double hydroxide microsphere/graphene composite for simultaneous electrochemical determination of trace Pb(II) and Cd(II). Chemical Engineering Journal, 347, 953-962. doi:10.1016/j.cej.2018.04.172 | es_ES |
dc.description.references | Mas, V., Dieuzeide, M. L., Jobbágy, M., Baronetti, G., Amadeo, N., & Laborde, M. (2008). Ni(II)-Al(III) layered double hydroxide as catalyst precursor for ethanol steam reforming: Activation treatments and kinetic studies. Catalysis Today, 133-135, 319-323. doi:10.1016/j.cattod.2007.11.032 | es_ES |
dc.description.references | Romero, A., Jobbágy, M., Laborde, M., Baronetti, G., & Amadeo, N. (2010). Ni(II)–Mg(II)–Al(III) catalysts for hydrogen production from ethanol steam reforming: Influence of the activation treatments. Catalysis Today, 149(3-4), 407-412. doi:10.1016/j.cattod.2009.05.026 | es_ES |
dc.description.references | Vizcaíno, A. J., Lindo, M., Carrero, A., & Calles, J. A. (2012). Hydrogen production by steam reforming of ethanol using Ni catalysts based on ternary mixed oxides prepared by coprecipitation. International Journal of Hydrogen Energy, 37(2), 1985-1992. doi:10.1016/j.ijhydene.2011.04.179 | es_ES |
dc.description.references | Romero, A., Jobbágy, M., Laborde, M., Baronetti, G., & Amadeo, N. (2014). Ni(II)–Mg(II)–Al(III) catalysts for hydrogen production from ethanol steam reforming: Influence of the Mg content. Applied Catalysis A: General, 470, 398-404. doi:10.1016/j.apcata.2013.10.054 | es_ES |
dc.description.references | Llorca, J., de la Piscina, P. R., Dalmon, J.-A., Sales, J., & Homs, N. (2003). CO-free hydrogen from steam-reforming of bioethanol over ZnO-supported cobalt catalysts. Applied Catalysis B: Environmental, 43(4), 355-369. doi:10.1016/s0926-3373(02)00326-0 | es_ES |
dc.description.references | Llorca, J. (2004). Effect of sodium addition on the performance of Co–ZnO-based catalysts for hydrogen production from bioethanol. Journal of Catalysis, 222(2), 470-480. doi:10.1016/j.jcat.2003.12.008 | es_ES |
dc.description.references | Homs, N., Llorca, J., & de la Piscina, P. R. (2006). Low-temperature steam-reforming of ethanol over ZnO-supported Ni and Cu catalysts. Catalysis Today, 116(3), 361-366. doi:10.1016/j.cattod.2006.05.081 | es_ES |
dc.description.references | YANG, Y., MA, J., & WU, F. (2006). Production of hydrogen by steam reforming of ethanol over a Ni/ZnO catalyst. International Journal of Hydrogen Energy, 31(7), 877-882. doi:10.1016/j.ijhydene.2005.06.029 | es_ES |
dc.description.references | Da Costa-Serra, J. F., Guil-López, R., & Chica, A. (2010). Co/ZnO and Ni/ZnO catalysts for hydrogen production by bioethanol steam reforming. Influence of ZnO support morphology on the catalytic properties of Co and Ni active phases. International Journal of Hydrogen Energy, 35(13), 6709-6716. doi:10.1016/j.ijhydene.2010.04.013 | es_ES |
dc.description.references | Lee, Y.-K., Kim, K.-S., Ahn, J.-G., Son, I.-H., & Shin, W. C. (2010). Hydrogen production from ethanol over Co/ZnO catalyst in a multi-layered reformer. International Journal of Hydrogen Energy, 35(3), 1147-1151. doi:10.1016/j.ijhydene.2009.11.035 | es_ES |
dc.description.references | Sau, G. S., Bianco, F., Lanchi, M., Liberatore, R., Mazzocchia, C. V., Spadoni, A., … Pin, F. (2010). Cu–Zn–Al based catalysts for low temperature bioethanol steam reforming by solar energy. International Journal of Hydrogen Energy, 35(14), 7280-7287. doi:10.1016/j.ijhydene.2010.04.092 | es_ES |
dc.description.references | Guil-López, R., Navarro, R. M., Peña, M. A., & Fierro, J. L. G. (2011). Hydrogen production by oxidative ethanol reforming on Co, Ni and Cu ex-hydrotalcite catalysts. International Journal of Hydrogen Energy, 36(2), 1512-1523. doi:10.1016/j.ijhydene.2010.10.084 | es_ES |
dc.description.references | Lucrédio, A. F., Bellido, J. D. A., & Assaf, E. M. (2010). Effects of adding La and Ce to hydrotalcite-type Ni/Mg/Al catalyst precursors on ethanol steam reforming reactions. Applied Catalysis A: General, 388(1-2), 77-85. doi:10.1016/j.apcata.2010.08.026 | es_ES |
dc.description.references | Hu, X., & Lu, G. (2010). Acetic acid steam reforming to hydrogen over Co–Ce/Al2O3 and Co–La/Al2O3 catalysts—The promotion effect of Ce and La addition. Catalysis Communications, 12(1), 50-53. doi:10.1016/j.catcom.2010.07.015 | es_ES |
dc.description.references | Calles, J. A., Carrero, A., & Vizcaíno, A. J. (2009). Ce and La modification of mesoporous Cu–Ni/SBA-15 catalysts for hydrogen production through ethanol steam reforming. Microporous and Mesoporous Materials, 119(1-3), 200-207. doi:10.1016/j.micromeso.2008.10.028 | es_ES |
dc.description.references | SANCHEZSANCHEZ, M., NAVARRO, R., & FIERRO, J. (2007). Ethanol steam reforming over Ni/La–Al2O3 catalysts: Influence of lanthanum loading. Catalysis Today, 129(3-4), 336-345. doi:10.1016/j.cattod.2006.10.013 | es_ES |
dc.description.references | De Freitas Silva, T., Dias, J. A. C., Maciel, C. G., & Assaf, J. M. (2013). Ni/Al2O3catalysts: effects of the promoters Ce, La and Zr on the methane steam and oxidative reforming reactions. Catal. Sci. Technol., 3(3), 635-643. doi:10.1039/c2cy20573d | es_ES |
dc.description.references | Melchor-Hernández, C., Gómez-Cortés, A., & Díaz, G. (2013). Hydrogen production by steam reforming of ethanol over nickel supported on La-modified alumina catalysts prepared by sol–gel. Fuel, 107, 828-835. doi:10.1016/j.fuel.2013.01.047 | es_ES |
dc.description.references | Xie, R., Fan, G., Yang, L., & Li, F. (2015). Solvent-free oxidation of ethylbenzene over hierarchical flower-like core–shell structured Co-based mixed metal oxides with significantly enhanced catalytic performance. Catalysis Science & Technology, 5(1), 540-548. doi:10.1039/c4cy00744a | es_ES |
dc.description.references | Busca, G., Costantino, U., Montanari, T., Ramis, G., Resini, C., & Sisani, M. (2010). Nickel versus cobalt catalysts for hydrogen production by ethanol steam reforming: Ni–Co–Zn–Al catalysts from hydrotalcite-like precursors. International Journal of Hydrogen Energy, 35(11), 5356-5366. doi:10.1016/j.ijhydene.2010.02.124 | es_ES |
dc.description.references | Velu, S., & Suzuki, K. (2000). Synthesis and characterization of a new Sn-incorporated CoAl-layered double hydroxide (LDH) and catalytic performance of Co-spinel microcrystallites in the partial oxidation of methanol. Studies in Surface Science and Catalysis, 451-458. doi:10.1016/s0167-2991(00)80245-1 | es_ES |
dc.description.references | Wang, S.-F., Sun, G.-Z., Fang, L.-M., Lei, L., Xiang, X., & Zu, X.-T. (2015). A comparative study of ZnAl2O4 nanoparticles synthesized from different aluminum salts for use as fluorescence materials. Scientific Reports, 5(1). doi:10.1038/srep12849 | es_ES |
dc.description.references | Venugopal, A., Palgunadi, J., Deog, J. K., Joo, O.-S., & Shin, C.-H. (2009). Dimethyl ether synthesis on the admixed catalysts of Cu-Zn-Al-M (M=Ga, La, Y, Zr) and γ-Al2O3: The role of modifier. Journal of Molecular Catalysis A: Chemical, 302(1-2), 20-27. doi:10.1016/j.molcata.2008.11.038 | es_ES |
dc.description.references | Fatsikostas, A. N., Kondarides, D. ., & Verykios, X. E. (2002). Production of hydrogen for fuel cells by reformation of biomass-derived ethanol. Catalysis Today, 75(1-4), 145-155. doi:10.1016/s0920-5861(02)00057-3 | es_ES |
dc.description.references | FATSIKOSTAS, A. (2004). Reaction network of steam reforming of ethanol over Ni-based catalysts. Journal of Catalysis, 225(2), 439-452. doi:10.1016/j.jcat.2004.04.034 | es_ES |
dc.subject.ods | 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos | es_ES |