- -

Co and La supported on Zn-Hydrotalcite-derived material as efficient catalyst for ethanol steam reforming

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Co and La supported on Zn-Hydrotalcite-derived material as efficient catalyst for ethanol steam reforming

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cerdá-Moreno, Cristina es_ES
dc.contributor.author Da Costa Serra, Javier Francisco es_ES
dc.contributor.author Chica, Antonio es_ES
dc.date.accessioned 2021-01-21T04:32:00Z
dc.date.available 2021-01-21T04:32:00Z
dc.date.issued 2019-05-17 es_ES
dc.identifier.issn 0360-3199 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159607
dc.description.abstract [EN] Four samples of Zn-hydrotalcite containing different amounts of Co (5, 10, 20, and 30 wt%) have been synthesized and tested in the steam reforming of ethanol. The best results were obtained with the sample containing 20 wt% of Co (20CoHT), with a complete conversion of ethanol and yields to hydrogen close to the equilibrium (73 mol.%). The physicochemical characterization of the samples by DRX, BET area and TPR indicates that the excellent performance exhibited by the sample containing 20 wt% of Co is due to the higher percentage of reduced cobalt and lower crystallite size of metallic cobalt present in this sample (11 nm). Additional studies have been carried out to improve the stability of this catalytic material against deactivation by the incorporation of 1 wt% of La. Stability studies were carried out using an industrial alcoholic waste as feed. Deactivation after 24 h of reaction time was found lower for the catalyst containing La (20CoLaHT), confirming the positive effect of lanthanum on the catalytic stability. The results presented here show that it is possible to prepare a catalyst based on Co supported on Zn-hydrotalcite and promoted with La with improved ethanol conversion, high hydrogen selectivity, and high stability to produce hydrogen by the steam reforming of an industrial alcoholic waste without commercial value. es_ES
dc.description.sponsorship Cristina Cerda-Moreno acknowledges the financial support from the Spanish Government through predoctoral training fellowships for "Centros de Excelencia Severo Ochoa" (SEV-2016-0683). The doctor Javier Francisco Da Costa Serra wants to have some words of thanks toward CSIC for granted the scholarship predoctoral-JAE-CSIC. We also thanks to Destilerias San Valero for supplying us the samples of the alcoholic wastes used in this work. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof International Journal of Hydrogen Energy es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Ethanol steam reforming es_ES
dc.subject Hydrogen production es_ES
dc.subject Hydrotalcite es_ES
dc.subject LDHs es_ES
dc.subject Cobalt catalyst es_ES
dc.subject Alcoholic waste es_ES
dc.title Co and La supported on Zn-Hydrotalcite-derived material as efficient catalyst for ethanol steam reforming es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1016/j.ijhydene.2019.01.156 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.description.bibliographicCitation Cerdá-Moreno, C.; Da Costa Serra, JF.; Chica, A. (2019). Co and La supported on Zn-Hydrotalcite-derived material as efficient catalyst for ethanol steam reforming. International Journal of Hydrogen Energy. 44(25):12685-12692. https://doi.org/10.1016/j.ijhydene.2019.01.156 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename European Hydrogen Energy Conference (EHEC 2018) es_ES
dc.relation.conferencedate Marzo 14-16,2018 es_ES
dc.relation.conferenceplace Málaga, Spain es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.ijhydene.2019.01.156 es_ES
dc.description.upvformatpinicio 12685 es_ES
dc.description.upvformatpfin 12692 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 44 es_ES
dc.description.issue 25 es_ES
dc.relation.pasarela S\377704 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Consejo Superior de Investigaciones Científicas es_ES
dc.description.references Liguras, D. K., Kondarides, D. I., & Verykios, X. E. (2003). Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. Applied Catalysis B: Environmental, 43(4), 345-354. doi:10.1016/s0926-3373(02)00327-2 es_ES
dc.description.references Da Silva Veras, T., Mozer, T. S., da Costa Rubim Messeder dos Santos, D., & da Silva César, A. (2017). Hydrogen: Trends, production and characterization of the main process worldwide. International Journal of Hydrogen Energy, 42(4), 2018-2033. doi:10.1016/j.ijhydene.2016.08.219 es_ES
dc.description.references Muradov, N. (2017). Low to near-zero CO2 production of hydrogen from fossil fuels: Status and perspectives. International Journal of Hydrogen Energy, 42(20), 14058-14088. doi:10.1016/j.ijhydene.2017.04.101 es_ES
dc.description.references Ma, F., & Hanna, M. A. (1999). Biodiesel production: a review1Journal Series #12109, Agricultural Research Division, Institute of Agriculture and Natural Resources, University of Nebraska–Lincoln.1. Bioresource Technology, 70(1), 1-15. doi:10.1016/s0960-8524(99)00025-5 es_ES
dc.description.references Maggio, G., Freni, S., & Cavallaro, S. (1998). Light alcohols/methane fuelled molten carbonate fuel cells: a comparative study. Journal of Power Sources, 74(1), 17-23. doi:10.1016/s0378-7753(98)00003-2 es_ES
dc.description.references F. Brown, L. (2001). A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles. International Journal of Hydrogen Energy, 26(4), 381-397. doi:10.1016/s0360-3199(00)00092-6 es_ES
dc.description.references Ni, M., Leung, D. Y. C., Leung, M. K. H., & Sumathy, K. (2006). An overview of hydrogen production from biomass. Fuel Processing Technology, 87(5), 461-472. doi:10.1016/j.fuproc.2005.11.003 es_ES
dc.description.references Haryanto, A., Fernando, S., Murali, N., & Adhikari, S. (2005). Current Status of Hydrogen Production Techniques by Steam Reforming of Ethanol:  A Review. Energy & Fuels, 19(5), 2098-2106. doi:10.1021/ef0500538 es_ES
dc.description.references Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass:  Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098. doi:10.1021/cr068360d es_ES
dc.description.references Ni, M., Leung, D. Y. C., & Leung, M. K. H. (2007). A review on reforming bio-ethanol for hydrogen production. International Journal of Hydrogen Energy, 32(15), 3238-3247. doi:10.1016/j.ijhydene.2007.04.038 es_ES
dc.description.references Comas, J., Mariño, F., Laborde, M., & Amadeo, N. (2004). Bio-ethanol steam reforming on Ni/Al2O3 catalyst. Chemical Engineering Journal, 98(1-2), 61-68. doi:10.1016/s1385-8947(03)00186-4 es_ES
dc.description.references Fierro, V., Akdim, O., Provendier, H., & Mirodatos, C. (2005). Ethanol oxidative steam reforming over Ni-based catalysts. Journal of Power Sources, 145(2), 659-666. doi:10.1016/j.jpowsour.2005.02.041 es_ES
dc.description.references Mattos, L. V., Jacobs, G., Davis, B. H., & Noronha, F. B. (2012). Production of Hydrogen from Ethanol: Review of Reaction Mechanism and Catalyst Deactivation. Chemical Reviews, 112(7), 4094-4123. doi:10.1021/cr2000114 es_ES
dc.description.references Sun, J., & Wang, Y. (2014). Recent Advances in Catalytic Conversion of Ethanol to Chemicals. ACS Catalysis, 4(4), 1078-1090. doi:10.1021/cs4011343 es_ES
dc.description.references LeValley, T. L., Richard, A. R., & Fan, M. (2014). The progress in water gas shift and steam reforming hydrogen production technologies – A review. International Journal of Hydrogen Energy, 39(30), 16983-17000. doi:10.1016/j.ijhydene.2014.08.041 es_ES
dc.description.references Contreras, J. L., Salmones, J., Colín-Luna, J. A., Nuño, L., Quintana, B., Córdova, I., … Fuentes, G. A. (2014). Catalysts for H 2 production using the ethanol steam reforming (a review). International Journal of Hydrogen Energy, 39(33), 18835-18853. doi:10.1016/j.ijhydene.2014.08.072 es_ES
dc.description.references DELAPENAOSHEA, V., NAFRIA, R., RAMIREZDELAPISCINA, P., & HOMS, N. (2008). Development of robust Co-based catalysts for the selective H2-production by ethanol steam-reforming. The Fe-promoter effect. International Journal of Hydrogen Energy, 33(13), 3601-3606. doi:10.1016/j.ijhydene.2007.10.049 es_ES
dc.description.references Da Costa-Serra, J. F., & Chica, A. (2011). Bioethanol steam reforming on Co/ITQ-18 catalyst: Effect of the crystalline structure of the delaminated zeolite ITQ-18. International Journal of Hydrogen Energy, 36(6), 3862-3869. doi:10.1016/j.ijhydene.2010.12.094 es_ES
dc.description.references Palma, V., Castaldo, F., Ciambelli, P., Iaquaniello, G., & Capitani, G. (2013). On the activity of bimetallic catalysts for ethanol steam reforming. International Journal of Hydrogen Energy, 38(16), 6633-6645. doi:10.1016/j.ijhydene.2013.03.089 es_ES
dc.description.references Yu, S.-W., Huang, H.-H., Tang, C.-W., & Wang, C.-B. (2014). The effect of accessible oxygen over Co3O4–CeO2 catalysts on the steam reforming of ethanol. International Journal of Hydrogen Energy, 39(35), 20700-20711. doi:10.1016/j.ijhydene.2014.07.139 es_ES
dc.description.references Ando, Y., & Matsuoka, K. (2016). Role of Fe in Co–Fe particle catalysts for suppressing CH4 production during ethanol steam reforming for hydrogen production. International Journal of Hydrogen Energy, 41(30), 12862-12868. doi:10.1016/j.ijhydene.2016.06.059 es_ES
dc.description.references European Wine: a solid pillar of the European Union economy. In: Vins– CCEdE, editor. http://www.ceev.eu/about-the-eu-wine-sector2016. es_ES
dc.description.references Li, D., Cai, Y., Ding, Y., Li, R., Lu, M., & Jiang, L. (2015). Layered double hydroxides as precursors of Cu catalysts for hydrogen production by water-gas shift reaction. International Journal of Hydrogen Energy, 40(32), 10016-10025. doi:10.1016/j.ijhydene.2015.05.183 es_ES
dc.description.references Zhang, L., Hui, K. N., Hui, K. S., Chen, X., Chen, R., & Lee, H. (2016). Role of graphene on hierarchical flower-like NiAl layered double hydroxide-nickel foam-graphene as binder-free electrode for high-rate hybrid supercapacitor. International Journal of Hydrogen Energy, 41(22), 9443-9453. doi:10.1016/j.ijhydene.2016.04.050 es_ES
dc.description.references Eshghi, A., & kheirmand, M. (2017). Graphene/Ni–Fe layered double hydroxide nano composites as advanced electrode materials for glucose electro oxidation. International Journal of Hydrogen Energy, 42(22), 15064-15072. doi:10.1016/j.ijhydene.2017.04.288 es_ES
dc.description.references Mostajeran, M., Prévot, V., Mal, S. S., Mattiussi, E., Davis, B. R., & Baker, R. T. (2017). Base-metal catalysts based on porous layered double hydroxides for alkaline-free sodium borohydride hydrolysis. International Journal of Hydrogen Energy, 42(31), 20092-20102. doi:10.1016/j.ijhydene.2017.06.007 es_ES
dc.description.references Di Vona, M. L., Casciola, M., Donnadio, A., Nocchetti, M., Pasquini, L., Narducci, R., & Knauth, P. (2017). Anionic conducting composite membranes based on aromatic polymer and layered double hydroxides. International Journal of Hydrogen Energy, 42(5), 3197-3205. doi:10.1016/j.ijhydene.2016.11.030 es_ES
dc.description.references Li, R., Xu, J., Ba, J., Li, Y., Liang, C., & Tang, T. (2018). Facile synthesis of nanometer-sized NiFe layered double hydroxide/nitrogen-doped graphite foam hybrids for enhanced electrocatalytic oxygen evolution reactions. International Journal of Hydrogen Energy, 43(16), 7956-7963. doi:10.1016/j.ijhydene.2018.03.067 es_ES
dc.description.references Shahrokhian, S., Rahimi, S., & Mohammadi, R. (2018). Nickel-cobalt layered double hydroxide ultrathin nanosheets coated on reduced graphene oxide nonosheets/nickel foam for high performance asymmetric supercapacitors. International Journal of Hydrogen Energy, 43(4), 2256-2267. doi:10.1016/j.ijhydene.2017.12.019 es_ES
dc.description.references Dong, X., Zhang, Y., Ding, B., Hao, X., Dou, H., & Zhang, X. (2018). Layer-by-layer self-assembled two-dimensional MXene/layered double hydroxide composites as cathode for alkaline hybrid batteries. Journal of Power Sources, 390, 208-214. doi:10.1016/j.jpowsour.2018.04.058 es_ES
dc.description.references Ma, Y., Wang, Y., Xie, D., Gu, Y., Zhu, X., Zhang, H., … Zhao, H. (2018). Hierarchical MgFe-layered double hydroxide microsphere/graphene composite for simultaneous electrochemical determination of trace Pb(II) and Cd(II). Chemical Engineering Journal, 347, 953-962. doi:10.1016/j.cej.2018.04.172 es_ES
dc.description.references Mas, V., Dieuzeide, M. L., Jobbágy, M., Baronetti, G., Amadeo, N., & Laborde, M. (2008). Ni(II)-Al(III) layered double hydroxide as catalyst precursor for ethanol steam reforming: Activation treatments and kinetic studies. Catalysis Today, 133-135, 319-323. doi:10.1016/j.cattod.2007.11.032 es_ES
dc.description.references Romero, A., Jobbágy, M., Laborde, M., Baronetti, G., & Amadeo, N. (2010). Ni(II)–Mg(II)–Al(III) catalysts for hydrogen production from ethanol steam reforming: Influence of the activation treatments. Catalysis Today, 149(3-4), 407-412. doi:10.1016/j.cattod.2009.05.026 es_ES
dc.description.references Vizcaíno, A. J., Lindo, M., Carrero, A., & Calles, J. A. (2012). Hydrogen production by steam reforming of ethanol using Ni catalysts based on ternary mixed oxides prepared by coprecipitation. International Journal of Hydrogen Energy, 37(2), 1985-1992. doi:10.1016/j.ijhydene.2011.04.179 es_ES
dc.description.references Romero, A., Jobbágy, M., Laborde, M., Baronetti, G., & Amadeo, N. (2014). Ni(II)–Mg(II)–Al(III) catalysts for hydrogen production from ethanol steam reforming: Influence of the Mg content. Applied Catalysis A: General, 470, 398-404. doi:10.1016/j.apcata.2013.10.054 es_ES
dc.description.references Llorca, J., de la Piscina, P. R., Dalmon, J.-A., Sales, J., & Homs, N. (2003). CO-free hydrogen from steam-reforming of bioethanol over ZnO-supported cobalt catalysts. Applied Catalysis B: Environmental, 43(4), 355-369. doi:10.1016/s0926-3373(02)00326-0 es_ES
dc.description.references Llorca, J. (2004). Effect of sodium addition on the performance of Co–ZnO-based catalysts for hydrogen production from bioethanol. Journal of Catalysis, 222(2), 470-480. doi:10.1016/j.jcat.2003.12.008 es_ES
dc.description.references Homs, N., Llorca, J., & de la Piscina, P. R. (2006). Low-temperature steam-reforming of ethanol over ZnO-supported Ni and Cu catalysts. Catalysis Today, 116(3), 361-366. doi:10.1016/j.cattod.2006.05.081 es_ES
dc.description.references YANG, Y., MA, J., & WU, F. (2006). Production of hydrogen by steam reforming of ethanol over a Ni/ZnO catalyst. International Journal of Hydrogen Energy, 31(7), 877-882. doi:10.1016/j.ijhydene.2005.06.029 es_ES
dc.description.references Da Costa-Serra, J. F., Guil-López, R., & Chica, A. (2010). Co/ZnO and Ni/ZnO catalysts for hydrogen production by bioethanol steam reforming. Influence of ZnO support morphology on the catalytic properties of Co and Ni active phases. International Journal of Hydrogen Energy, 35(13), 6709-6716. doi:10.1016/j.ijhydene.2010.04.013 es_ES
dc.description.references Lee, Y.-K., Kim, K.-S., Ahn, J.-G., Son, I.-H., & Shin, W. C. (2010). Hydrogen production from ethanol over Co/ZnO catalyst in a multi-layered reformer. International Journal of Hydrogen Energy, 35(3), 1147-1151. doi:10.1016/j.ijhydene.2009.11.035 es_ES
dc.description.references Sau, G. S., Bianco, F., Lanchi, M., Liberatore, R., Mazzocchia, C. V., Spadoni, A., … Pin, F. (2010). Cu–Zn–Al based catalysts for low temperature bioethanol steam reforming by solar energy. International Journal of Hydrogen Energy, 35(14), 7280-7287. doi:10.1016/j.ijhydene.2010.04.092 es_ES
dc.description.references Guil-López, R., Navarro, R. M., Peña, M. A., & Fierro, J. L. G. (2011). Hydrogen production by oxidative ethanol reforming on Co, Ni and Cu ex-hydrotalcite catalysts. International Journal of Hydrogen Energy, 36(2), 1512-1523. doi:10.1016/j.ijhydene.2010.10.084 es_ES
dc.description.references Lucrédio, A. F., Bellido, J. D. A., & Assaf, E. M. (2010). Effects of adding La and Ce to hydrotalcite-type Ni/Mg/Al catalyst precursors on ethanol steam reforming reactions. Applied Catalysis A: General, 388(1-2), 77-85. doi:10.1016/j.apcata.2010.08.026 es_ES
dc.description.references Hu, X., & Lu, G. (2010). Acetic acid steam reforming to hydrogen over Co–Ce/Al2O3 and Co–La/Al2O3 catalysts—The promotion effect of Ce and La addition. Catalysis Communications, 12(1), 50-53. doi:10.1016/j.catcom.2010.07.015 es_ES
dc.description.references Calles, J. A., Carrero, A., & Vizcaíno, A. J. (2009). Ce and La modification of mesoporous Cu–Ni/SBA-15 catalysts for hydrogen production through ethanol steam reforming. Microporous and Mesoporous Materials, 119(1-3), 200-207. doi:10.1016/j.micromeso.2008.10.028 es_ES
dc.description.references SANCHEZSANCHEZ, M., NAVARRO, R., & FIERRO, J. (2007). Ethanol steam reforming over Ni/La–Al2O3 catalysts: Influence of lanthanum loading. Catalysis Today, 129(3-4), 336-345. doi:10.1016/j.cattod.2006.10.013 es_ES
dc.description.references De Freitas Silva, T., Dias, J. A. C., Maciel, C. G., & Assaf, J. M. (2013). Ni/Al2O3catalysts: effects of the promoters Ce, La and Zr on the methane steam and oxidative reforming reactions. Catal. Sci. Technol., 3(3), 635-643. doi:10.1039/c2cy20573d es_ES
dc.description.references Melchor-Hernández, C., Gómez-Cortés, A., & Díaz, G. (2013). Hydrogen production by steam reforming of ethanol over nickel supported on La-modified alumina catalysts prepared by sol–gel. Fuel, 107, 828-835. doi:10.1016/j.fuel.2013.01.047 es_ES
dc.description.references Xie, R., Fan, G., Yang, L., & Li, F. (2015). Solvent-free oxidation of ethylbenzene over hierarchical flower-like core–shell structured Co-based mixed metal oxides with significantly enhanced catalytic performance. Catalysis Science & Technology, 5(1), 540-548. doi:10.1039/c4cy00744a es_ES
dc.description.references Busca, G., Costantino, U., Montanari, T., Ramis, G., Resini, C., & Sisani, M. (2010). Nickel versus cobalt catalysts for hydrogen production by ethanol steam reforming: Ni–Co–Zn–Al catalysts from hydrotalcite-like precursors. International Journal of Hydrogen Energy, 35(11), 5356-5366. doi:10.1016/j.ijhydene.2010.02.124 es_ES
dc.description.references Velu, S., & Suzuki, K. (2000). Synthesis and characterization of a new Sn-incorporated CoAl-layered double hydroxide (LDH) and catalytic performance of Co-spinel microcrystallites in the partial oxidation of methanol. Studies in Surface Science and Catalysis, 451-458. doi:10.1016/s0167-2991(00)80245-1 es_ES
dc.description.references Wang, S.-F., Sun, G.-Z., Fang, L.-M., Lei, L., Xiang, X., & Zu, X.-T. (2015). A comparative study of ZnAl2O4 nanoparticles synthesized from different aluminum salts for use as fluorescence materials. Scientific Reports, 5(1). doi:10.1038/srep12849 es_ES
dc.description.references Venugopal, A., Palgunadi, J., Deog, J. K., Joo, O.-S., & Shin, C.-H. (2009). Dimethyl ether synthesis on the admixed catalysts of Cu-Zn-Al-M (M=Ga, La, Y, Zr) and γ-Al2O3: The role of modifier. Journal of Molecular Catalysis A: Chemical, 302(1-2), 20-27. doi:10.1016/j.molcata.2008.11.038 es_ES
dc.description.references Fatsikostas, A. N., Kondarides, D. ., & Verykios, X. E. (2002). Production of hydrogen for fuel cells by reformation of biomass-derived ethanol. Catalysis Today, 75(1-4), 145-155. doi:10.1016/s0920-5861(02)00057-3 es_ES
dc.description.references FATSIKOSTAS, A. (2004). Reaction network of steam reforming of ethanol over Ni-based catalysts. Journal of Catalysis, 225(2), 439-452. doi:10.1016/j.jcat.2004.04.034 es_ES
dc.subject.ods 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem