Liguras, D. K., Kondarides, D. I., & Verykios, X. E. (2003). Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. Applied Catalysis B: Environmental, 43(4), 345-354. doi:10.1016/s0926-3373(02)00327-2
Da Silva Veras, T., Mozer, T. S., da Costa Rubim Messeder dos Santos, D., & da Silva César, A. (2017). Hydrogen: Trends, production and characterization of the main process worldwide. International Journal of Hydrogen Energy, 42(4), 2018-2033. doi:10.1016/j.ijhydene.2016.08.219
Muradov, N. (2017). Low to near-zero CO2 production of hydrogen from fossil fuels: Status and perspectives. International Journal of Hydrogen Energy, 42(20), 14058-14088. doi:10.1016/j.ijhydene.2017.04.101
[+]
Liguras, D. K., Kondarides, D. I., & Verykios, X. E. (2003). Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. Applied Catalysis B: Environmental, 43(4), 345-354. doi:10.1016/s0926-3373(02)00327-2
Da Silva Veras, T., Mozer, T. S., da Costa Rubim Messeder dos Santos, D., & da Silva César, A. (2017). Hydrogen: Trends, production and characterization of the main process worldwide. International Journal of Hydrogen Energy, 42(4), 2018-2033. doi:10.1016/j.ijhydene.2016.08.219
Muradov, N. (2017). Low to near-zero CO2 production of hydrogen from fossil fuels: Status and perspectives. International Journal of Hydrogen Energy, 42(20), 14058-14088. doi:10.1016/j.ijhydene.2017.04.101
Ma, F., & Hanna, M. A. (1999). Biodiesel production: a review1Journal Series #12109, Agricultural Research Division, Institute of Agriculture and Natural Resources, University of Nebraska–Lincoln.1. Bioresource Technology, 70(1), 1-15. doi:10.1016/s0960-8524(99)00025-5
Maggio, G., Freni, S., & Cavallaro, S. (1998). Light alcohols/methane fuelled molten carbonate fuel cells: a comparative study. Journal of Power Sources, 74(1), 17-23. doi:10.1016/s0378-7753(98)00003-2
F. Brown, L. (2001). A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles. International Journal of Hydrogen Energy, 26(4), 381-397. doi:10.1016/s0360-3199(00)00092-6
Ni, M., Leung, D. Y. C., Leung, M. K. H., & Sumathy, K. (2006). An overview of hydrogen production from biomass. Fuel Processing Technology, 87(5), 461-472. doi:10.1016/j.fuproc.2005.11.003
Haryanto, A., Fernando, S., Murali, N., & Adhikari, S. (2005). Current Status of Hydrogen Production Techniques by Steam Reforming of Ethanol: A Review. Energy & Fuels, 19(5), 2098-2106. doi:10.1021/ef0500538
Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098. doi:10.1021/cr068360d
Ni, M., Leung, D. Y. C., & Leung, M. K. H. (2007). A review on reforming bio-ethanol for hydrogen production. International Journal of Hydrogen Energy, 32(15), 3238-3247. doi:10.1016/j.ijhydene.2007.04.038
Comas, J., Mariño, F., Laborde, M., & Amadeo, N. (2004). Bio-ethanol steam reforming on Ni/Al2O3 catalyst. Chemical Engineering Journal, 98(1-2), 61-68. doi:10.1016/s1385-8947(03)00186-4
Fierro, V., Akdim, O., Provendier, H., & Mirodatos, C. (2005). Ethanol oxidative steam reforming over Ni-based catalysts. Journal of Power Sources, 145(2), 659-666. doi:10.1016/j.jpowsour.2005.02.041
Mattos, L. V., Jacobs, G., Davis, B. H., & Noronha, F. B. (2012). Production of Hydrogen from Ethanol: Review of Reaction Mechanism and Catalyst Deactivation. Chemical Reviews, 112(7), 4094-4123. doi:10.1021/cr2000114
Sun, J., & Wang, Y. (2014). Recent Advances in Catalytic Conversion of Ethanol to Chemicals. ACS Catalysis, 4(4), 1078-1090. doi:10.1021/cs4011343
LeValley, T. L., Richard, A. R., & Fan, M. (2014). The progress in water gas shift and steam reforming hydrogen production technologies – A review. International Journal of Hydrogen Energy, 39(30), 16983-17000. doi:10.1016/j.ijhydene.2014.08.041
Contreras, J. L., Salmones, J., Colín-Luna, J. A., Nuño, L., Quintana, B., Córdova, I., … Fuentes, G. A. (2014). Catalysts for H 2 production using the ethanol steam reforming (a review). International Journal of Hydrogen Energy, 39(33), 18835-18853. doi:10.1016/j.ijhydene.2014.08.072
DELAPENAOSHEA, V., NAFRIA, R., RAMIREZDELAPISCINA, P., & HOMS, N. (2008). Development of robust Co-based catalysts for the selective H2-production by ethanol steam-reforming. The Fe-promoter effect. International Journal of Hydrogen Energy, 33(13), 3601-3606. doi:10.1016/j.ijhydene.2007.10.049
Da Costa-Serra, J. F., & Chica, A. (2011). Bioethanol steam reforming on Co/ITQ-18 catalyst: Effect of the crystalline structure of the delaminated zeolite ITQ-18. International Journal of Hydrogen Energy, 36(6), 3862-3869. doi:10.1016/j.ijhydene.2010.12.094
Palma, V., Castaldo, F., Ciambelli, P., Iaquaniello, G., & Capitani, G. (2013). On the activity of bimetallic catalysts for ethanol steam reforming. International Journal of Hydrogen Energy, 38(16), 6633-6645. doi:10.1016/j.ijhydene.2013.03.089
Yu, S.-W., Huang, H.-H., Tang, C.-W., & Wang, C.-B. (2014). The effect of accessible oxygen over Co3O4–CeO2 catalysts on the steam reforming of ethanol. International Journal of Hydrogen Energy, 39(35), 20700-20711. doi:10.1016/j.ijhydene.2014.07.139
Ando, Y., & Matsuoka, K. (2016). Role of Fe in Co–Fe particle catalysts for suppressing CH4 production during ethanol steam reforming for hydrogen production. International Journal of Hydrogen Energy, 41(30), 12862-12868. doi:10.1016/j.ijhydene.2016.06.059
European Wine: a solid pillar of the European Union economy. In: Vins– CCEdE, editor. http://www.ceev.eu/about-the-eu-wine-sector2016.
Li, D., Cai, Y., Ding, Y., Li, R., Lu, M., & Jiang, L. (2015). Layered double hydroxides as precursors of Cu catalysts for hydrogen production by water-gas shift reaction. International Journal of Hydrogen Energy, 40(32), 10016-10025. doi:10.1016/j.ijhydene.2015.05.183
Zhang, L., Hui, K. N., Hui, K. S., Chen, X., Chen, R., & Lee, H. (2016). Role of graphene on hierarchical flower-like NiAl layered double hydroxide-nickel foam-graphene as binder-free electrode for high-rate hybrid supercapacitor. International Journal of Hydrogen Energy, 41(22), 9443-9453. doi:10.1016/j.ijhydene.2016.04.050
Eshghi, A., & kheirmand, M. (2017). Graphene/Ni–Fe layered double hydroxide nano composites as advanced electrode materials for glucose electro oxidation. International Journal of Hydrogen Energy, 42(22), 15064-15072. doi:10.1016/j.ijhydene.2017.04.288
Mostajeran, M., Prévot, V., Mal, S. S., Mattiussi, E., Davis, B. R., & Baker, R. T. (2017). Base-metal catalysts based on porous layered double hydroxides for alkaline-free sodium borohydride hydrolysis. International Journal of Hydrogen Energy, 42(31), 20092-20102. doi:10.1016/j.ijhydene.2017.06.007
Di Vona, M. L., Casciola, M., Donnadio, A., Nocchetti, M., Pasquini, L., Narducci, R., & Knauth, P. (2017). Anionic conducting composite membranes based on aromatic polymer and layered double hydroxides. International Journal of Hydrogen Energy, 42(5), 3197-3205. doi:10.1016/j.ijhydene.2016.11.030
Li, R., Xu, J., Ba, J., Li, Y., Liang, C., & Tang, T. (2018). Facile synthesis of nanometer-sized NiFe layered double hydroxide/nitrogen-doped graphite foam hybrids for enhanced electrocatalytic oxygen evolution reactions. International Journal of Hydrogen Energy, 43(16), 7956-7963. doi:10.1016/j.ijhydene.2018.03.067
Shahrokhian, S., Rahimi, S., & Mohammadi, R. (2018). Nickel-cobalt layered double hydroxide ultrathin nanosheets coated on reduced graphene oxide nonosheets/nickel foam for high performance asymmetric supercapacitors. International Journal of Hydrogen Energy, 43(4), 2256-2267. doi:10.1016/j.ijhydene.2017.12.019
Dong, X., Zhang, Y., Ding, B., Hao, X., Dou, H., & Zhang, X. (2018). Layer-by-layer self-assembled two-dimensional MXene/layered double hydroxide composites as cathode for alkaline hybrid batteries. Journal of Power Sources, 390, 208-214. doi:10.1016/j.jpowsour.2018.04.058
Ma, Y., Wang, Y., Xie, D., Gu, Y., Zhu, X., Zhang, H., … Zhao, H. (2018). Hierarchical MgFe-layered double hydroxide microsphere/graphene composite for simultaneous electrochemical determination of trace Pb(II) and Cd(II). Chemical Engineering Journal, 347, 953-962. doi:10.1016/j.cej.2018.04.172
Mas, V., Dieuzeide, M. L., Jobbágy, M., Baronetti, G., Amadeo, N., & Laborde, M. (2008). Ni(II)-Al(III) layered double hydroxide as catalyst precursor for ethanol steam reforming: Activation treatments and kinetic studies. Catalysis Today, 133-135, 319-323. doi:10.1016/j.cattod.2007.11.032
Romero, A., Jobbágy, M., Laborde, M., Baronetti, G., & Amadeo, N. (2010). Ni(II)–Mg(II)–Al(III) catalysts for hydrogen production from ethanol steam reforming: Influence of the activation treatments. Catalysis Today, 149(3-4), 407-412. doi:10.1016/j.cattod.2009.05.026
Vizcaíno, A. J., Lindo, M., Carrero, A., & Calles, J. A. (2012). Hydrogen production by steam reforming of ethanol using Ni catalysts based on ternary mixed oxides prepared by coprecipitation. International Journal of Hydrogen Energy, 37(2), 1985-1992. doi:10.1016/j.ijhydene.2011.04.179
Romero, A., Jobbágy, M., Laborde, M., Baronetti, G., & Amadeo, N. (2014). Ni(II)–Mg(II)–Al(III) catalysts for hydrogen production from ethanol steam reforming: Influence of the Mg content. Applied Catalysis A: General, 470, 398-404. doi:10.1016/j.apcata.2013.10.054
Llorca, J., de la Piscina, P. R., Dalmon, J.-A., Sales, J., & Homs, N. (2003). CO-free hydrogen from steam-reforming of bioethanol over ZnO-supported cobalt catalysts. Applied Catalysis B: Environmental, 43(4), 355-369. doi:10.1016/s0926-3373(02)00326-0
Llorca, J. (2004). Effect of sodium addition on the performance of Co–ZnO-based catalysts for hydrogen production from bioethanol. Journal of Catalysis, 222(2), 470-480. doi:10.1016/j.jcat.2003.12.008
Homs, N., Llorca, J., & de la Piscina, P. R. (2006). Low-temperature steam-reforming of ethanol over ZnO-supported Ni and Cu catalysts. Catalysis Today, 116(3), 361-366. doi:10.1016/j.cattod.2006.05.081
YANG, Y., MA, J., & WU, F. (2006). Production of hydrogen by steam reforming of ethanol over a Ni/ZnO catalyst. International Journal of Hydrogen Energy, 31(7), 877-882. doi:10.1016/j.ijhydene.2005.06.029
Da Costa-Serra, J. F., Guil-López, R., & Chica, A. (2010). Co/ZnO and Ni/ZnO catalysts for hydrogen production by bioethanol steam reforming. Influence of ZnO support morphology on the catalytic properties of Co and Ni active phases. International Journal of Hydrogen Energy, 35(13), 6709-6716. doi:10.1016/j.ijhydene.2010.04.013
Lee, Y.-K., Kim, K.-S., Ahn, J.-G., Son, I.-H., & Shin, W. C. (2010). Hydrogen production from ethanol over Co/ZnO catalyst in a multi-layered reformer. International Journal of Hydrogen Energy, 35(3), 1147-1151. doi:10.1016/j.ijhydene.2009.11.035
Sau, G. S., Bianco, F., Lanchi, M., Liberatore, R., Mazzocchia, C. V., Spadoni, A., … Pin, F. (2010). Cu–Zn–Al based catalysts for low temperature bioethanol steam reforming by solar energy. International Journal of Hydrogen Energy, 35(14), 7280-7287. doi:10.1016/j.ijhydene.2010.04.092
Guil-López, R., Navarro, R. M., Peña, M. A., & Fierro, J. L. G. (2011). Hydrogen production by oxidative ethanol reforming on Co, Ni and Cu ex-hydrotalcite catalysts. International Journal of Hydrogen Energy, 36(2), 1512-1523. doi:10.1016/j.ijhydene.2010.10.084
Lucrédio, A. F., Bellido, J. D. A., & Assaf, E. M. (2010). Effects of adding La and Ce to hydrotalcite-type Ni/Mg/Al catalyst precursors on ethanol steam reforming reactions. Applied Catalysis A: General, 388(1-2), 77-85. doi:10.1016/j.apcata.2010.08.026
Hu, X., & Lu, G. (2010). Acetic acid steam reforming to hydrogen over Co–Ce/Al2O3 and Co–La/Al2O3 catalysts—The promotion effect of Ce and La addition. Catalysis Communications, 12(1), 50-53. doi:10.1016/j.catcom.2010.07.015
Calles, J. A., Carrero, A., & Vizcaíno, A. J. (2009). Ce and La modification of mesoporous Cu–Ni/SBA-15 catalysts for hydrogen production through ethanol steam reforming. Microporous and Mesoporous Materials, 119(1-3), 200-207. doi:10.1016/j.micromeso.2008.10.028
SANCHEZSANCHEZ, M., NAVARRO, R., & FIERRO, J. (2007). Ethanol steam reforming over Ni/La–Al2O3 catalysts: Influence of lanthanum loading. Catalysis Today, 129(3-4), 336-345. doi:10.1016/j.cattod.2006.10.013
De Freitas Silva, T., Dias, J. A. C., Maciel, C. G., & Assaf, J. M. (2013). Ni/Al2O3catalysts: effects of the promoters Ce, La and Zr on the methane steam and oxidative reforming reactions. Catal. Sci. Technol., 3(3), 635-643. doi:10.1039/c2cy20573d
Melchor-Hernández, C., Gómez-Cortés, A., & Díaz, G. (2013). Hydrogen production by steam reforming of ethanol over nickel supported on La-modified alumina catalysts prepared by sol–gel. Fuel, 107, 828-835. doi:10.1016/j.fuel.2013.01.047
Xie, R., Fan, G., Yang, L., & Li, F. (2015). Solvent-free oxidation of ethylbenzene over hierarchical flower-like core–shell structured Co-based mixed metal oxides with significantly enhanced catalytic performance. Catalysis Science & Technology, 5(1), 540-548. doi:10.1039/c4cy00744a
Busca, G., Costantino, U., Montanari, T., Ramis, G., Resini, C., & Sisani, M. (2010). Nickel versus cobalt catalysts for hydrogen production by ethanol steam reforming: Ni–Co–Zn–Al catalysts from hydrotalcite-like precursors. International Journal of Hydrogen Energy, 35(11), 5356-5366. doi:10.1016/j.ijhydene.2010.02.124
Velu, S., & Suzuki, K. (2000). Synthesis and characterization of a new Sn-incorporated CoAl-layered double hydroxide (LDH) and catalytic performance of Co-spinel microcrystallites in the partial oxidation of methanol. Studies in Surface Science and Catalysis, 451-458. doi:10.1016/s0167-2991(00)80245-1
Wang, S.-F., Sun, G.-Z., Fang, L.-M., Lei, L., Xiang, X., & Zu, X.-T. (2015). A comparative study of ZnAl2O4 nanoparticles synthesized from different aluminum salts for use as fluorescence materials. Scientific Reports, 5(1). doi:10.1038/srep12849
Venugopal, A., Palgunadi, J., Deog, J. K., Joo, O.-S., & Shin, C.-H. (2009). Dimethyl ether synthesis on the admixed catalysts of Cu-Zn-Al-M (M=Ga, La, Y, Zr) and γ-Al2O3: The role of modifier. Journal of Molecular Catalysis A: Chemical, 302(1-2), 20-27. doi:10.1016/j.molcata.2008.11.038
Fatsikostas, A. N., Kondarides, D. ., & Verykios, X. E. (2002). Production of hydrogen for fuel cells by reformation of biomass-derived ethanol. Catalysis Today, 75(1-4), 145-155. doi:10.1016/s0920-5861(02)00057-3
FATSIKOSTAS, A. (2004). Reaction network of steam reforming of ethanol over Ni-based catalysts. Journal of Catalysis, 225(2), 439-452. doi:10.1016/j.jcat.2004.04.034
[-]