- -

Co and La supported on Zn-Hydrotalcite-derived material as efficient catalyst for ethanol steam reforming

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Co and La supported on Zn-Hydrotalcite-derived material as efficient catalyst for ethanol steam reforming

Mostrar el registro completo del ítem

Cerdá-Moreno, C.; Da Costa Serra, JF.; Chica, A. (2019). Co and La supported on Zn-Hydrotalcite-derived material as efficient catalyst for ethanol steam reforming. International Journal of Hydrogen Energy. 44(25):12685-12692. https://doi.org/10.1016/j.ijhydene.2019.01.156

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159607

Ficheros en el ítem

Metadatos del ítem

Título: Co and La supported on Zn-Hydrotalcite-derived material as efficient catalyst for ethanol steam reforming
Autor: Cerdá-Moreno, Cristina Da Costa Serra, Javier Francisco Chica, Antonio
Fecha difusión:
Resumen:
[EN] Four samples of Zn-hydrotalcite containing different amounts of Co (5, 10, 20, and 30 wt%) have been synthesized and tested in the steam reforming of ethanol. The best results were obtained with the sample containing ...[+]
Palabras clave: Ethanol steam reforming , Hydrogen production , Hydrotalcite , LDHs , Cobalt catalyst , Alcoholic waste
Derechos de uso: Cerrado
Fuente:
International Journal of Hydrogen Energy. (issn: 0360-3199 )
DOI: 10.1016/j.ijhydene.2019.01.156
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.ijhydene.2019.01.156
Título del congreso: European Hydrogen Energy Conference (EHEC 2018)
Lugar del congreso: Málaga, Spain
Fecha congreso: Marzo 14-16,2018
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
Agradecimientos:
Cristina Cerda-Moreno acknowledges the financial support from the Spanish Government through predoctoral training fellowships for "Centros de Excelencia Severo Ochoa" (SEV-2016-0683). The doctor Javier Francisco Da Costa ...[+]
Tipo: Artículo Comunicación en congreso

References

Liguras, D. K., Kondarides, D. I., & Verykios, X. E. (2003). Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. Applied Catalysis B: Environmental, 43(4), 345-354. doi:10.1016/s0926-3373(02)00327-2

Da Silva Veras, T., Mozer, T. S., da Costa Rubim Messeder dos Santos, D., & da Silva César, A. (2017). Hydrogen: Trends, production and characterization of the main process worldwide. International Journal of Hydrogen Energy, 42(4), 2018-2033. doi:10.1016/j.ijhydene.2016.08.219

Muradov, N. (2017). Low to near-zero CO2 production of hydrogen from fossil fuels: Status and perspectives. International Journal of Hydrogen Energy, 42(20), 14058-14088. doi:10.1016/j.ijhydene.2017.04.101 [+]
Liguras, D. K., Kondarides, D. I., & Verykios, X. E. (2003). Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. Applied Catalysis B: Environmental, 43(4), 345-354. doi:10.1016/s0926-3373(02)00327-2

Da Silva Veras, T., Mozer, T. S., da Costa Rubim Messeder dos Santos, D., & da Silva César, A. (2017). Hydrogen: Trends, production and characterization of the main process worldwide. International Journal of Hydrogen Energy, 42(4), 2018-2033. doi:10.1016/j.ijhydene.2016.08.219

Muradov, N. (2017). Low to near-zero CO2 production of hydrogen from fossil fuels: Status and perspectives. International Journal of Hydrogen Energy, 42(20), 14058-14088. doi:10.1016/j.ijhydene.2017.04.101

Ma, F., & Hanna, M. A. (1999). Biodiesel production: a review1Journal Series #12109, Agricultural Research Division, Institute of Agriculture and Natural Resources, University of Nebraska–Lincoln.1. Bioresource Technology, 70(1), 1-15. doi:10.1016/s0960-8524(99)00025-5

Maggio, G., Freni, S., & Cavallaro, S. (1998). Light alcohols/methane fuelled molten carbonate fuel cells: a comparative study. Journal of Power Sources, 74(1), 17-23. doi:10.1016/s0378-7753(98)00003-2

F. Brown, L. (2001). A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles. International Journal of Hydrogen Energy, 26(4), 381-397. doi:10.1016/s0360-3199(00)00092-6

Ni, M., Leung, D. Y. C., Leung, M. K. H., & Sumathy, K. (2006). An overview of hydrogen production from biomass. Fuel Processing Technology, 87(5), 461-472. doi:10.1016/j.fuproc.2005.11.003

Haryanto, A., Fernando, S., Murali, N., & Adhikari, S. (2005). Current Status of Hydrogen Production Techniques by Steam Reforming of Ethanol:  A Review. Energy & Fuels, 19(5), 2098-2106. doi:10.1021/ef0500538

Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass:  Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098. doi:10.1021/cr068360d

Ni, M., Leung, D. Y. C., & Leung, M. K. H. (2007). A review on reforming bio-ethanol for hydrogen production. International Journal of Hydrogen Energy, 32(15), 3238-3247. doi:10.1016/j.ijhydene.2007.04.038

Comas, J., Mariño, F., Laborde, M., & Amadeo, N. (2004). Bio-ethanol steam reforming on Ni/Al2O3 catalyst. Chemical Engineering Journal, 98(1-2), 61-68. doi:10.1016/s1385-8947(03)00186-4

Fierro, V., Akdim, O., Provendier, H., & Mirodatos, C. (2005). Ethanol oxidative steam reforming over Ni-based catalysts. Journal of Power Sources, 145(2), 659-666. doi:10.1016/j.jpowsour.2005.02.041

Mattos, L. V., Jacobs, G., Davis, B. H., & Noronha, F. B. (2012). Production of Hydrogen from Ethanol: Review of Reaction Mechanism and Catalyst Deactivation. Chemical Reviews, 112(7), 4094-4123. doi:10.1021/cr2000114

Sun, J., & Wang, Y. (2014). Recent Advances in Catalytic Conversion of Ethanol to Chemicals. ACS Catalysis, 4(4), 1078-1090. doi:10.1021/cs4011343

LeValley, T. L., Richard, A. R., & Fan, M. (2014). The progress in water gas shift and steam reforming hydrogen production technologies – A review. International Journal of Hydrogen Energy, 39(30), 16983-17000. doi:10.1016/j.ijhydene.2014.08.041

Contreras, J. L., Salmones, J., Colín-Luna, J. A., Nuño, L., Quintana, B., Córdova, I., … Fuentes, G. A. (2014). Catalysts for H 2 production using the ethanol steam reforming (a review). International Journal of Hydrogen Energy, 39(33), 18835-18853. doi:10.1016/j.ijhydene.2014.08.072

DELAPENAOSHEA, V., NAFRIA, R., RAMIREZDELAPISCINA, P., & HOMS, N. (2008). Development of robust Co-based catalysts for the selective H2-production by ethanol steam-reforming. The Fe-promoter effect. International Journal of Hydrogen Energy, 33(13), 3601-3606. doi:10.1016/j.ijhydene.2007.10.049

Da Costa-Serra, J. F., & Chica, A. (2011). Bioethanol steam reforming on Co/ITQ-18 catalyst: Effect of the crystalline structure of the delaminated zeolite ITQ-18. International Journal of Hydrogen Energy, 36(6), 3862-3869. doi:10.1016/j.ijhydene.2010.12.094

Palma, V., Castaldo, F., Ciambelli, P., Iaquaniello, G., & Capitani, G. (2013). On the activity of bimetallic catalysts for ethanol steam reforming. International Journal of Hydrogen Energy, 38(16), 6633-6645. doi:10.1016/j.ijhydene.2013.03.089

Yu, S.-W., Huang, H.-H., Tang, C.-W., & Wang, C.-B. (2014). The effect of accessible oxygen over Co3O4–CeO2 catalysts on the steam reforming of ethanol. International Journal of Hydrogen Energy, 39(35), 20700-20711. doi:10.1016/j.ijhydene.2014.07.139

Ando, Y., & Matsuoka, K. (2016). Role of Fe in Co–Fe particle catalysts for suppressing CH4 production during ethanol steam reforming for hydrogen production. International Journal of Hydrogen Energy, 41(30), 12862-12868. doi:10.1016/j.ijhydene.2016.06.059

European Wine: a solid pillar of the European Union economy. In: Vins– CCEdE, editor. http://www.ceev.eu/about-the-eu-wine-sector2016.

Li, D., Cai, Y., Ding, Y., Li, R., Lu, M., & Jiang, L. (2015). Layered double hydroxides as precursors of Cu catalysts for hydrogen production by water-gas shift reaction. International Journal of Hydrogen Energy, 40(32), 10016-10025. doi:10.1016/j.ijhydene.2015.05.183

Zhang, L., Hui, K. N., Hui, K. S., Chen, X., Chen, R., & Lee, H. (2016). Role of graphene on hierarchical flower-like NiAl layered double hydroxide-nickel foam-graphene as binder-free electrode for high-rate hybrid supercapacitor. International Journal of Hydrogen Energy, 41(22), 9443-9453. doi:10.1016/j.ijhydene.2016.04.050

Eshghi, A., & kheirmand, M. (2017). Graphene/Ni–Fe layered double hydroxide nano composites as advanced electrode materials for glucose electro oxidation. International Journal of Hydrogen Energy, 42(22), 15064-15072. doi:10.1016/j.ijhydene.2017.04.288

Mostajeran, M., Prévot, V., Mal, S. S., Mattiussi, E., Davis, B. R., & Baker, R. T. (2017). Base-metal catalysts based on porous layered double hydroxides for alkaline-free sodium borohydride hydrolysis. International Journal of Hydrogen Energy, 42(31), 20092-20102. doi:10.1016/j.ijhydene.2017.06.007

Di Vona, M. L., Casciola, M., Donnadio, A., Nocchetti, M., Pasquini, L., Narducci, R., & Knauth, P. (2017). Anionic conducting composite membranes based on aromatic polymer and layered double hydroxides. International Journal of Hydrogen Energy, 42(5), 3197-3205. doi:10.1016/j.ijhydene.2016.11.030

Li, R., Xu, J., Ba, J., Li, Y., Liang, C., & Tang, T. (2018). Facile synthesis of nanometer-sized NiFe layered double hydroxide/nitrogen-doped graphite foam hybrids for enhanced electrocatalytic oxygen evolution reactions. International Journal of Hydrogen Energy, 43(16), 7956-7963. doi:10.1016/j.ijhydene.2018.03.067

Shahrokhian, S., Rahimi, S., & Mohammadi, R. (2018). Nickel-cobalt layered double hydroxide ultrathin nanosheets coated on reduced graphene oxide nonosheets/nickel foam for high performance asymmetric supercapacitors. International Journal of Hydrogen Energy, 43(4), 2256-2267. doi:10.1016/j.ijhydene.2017.12.019

Dong, X., Zhang, Y., Ding, B., Hao, X., Dou, H., & Zhang, X. (2018). Layer-by-layer self-assembled two-dimensional MXene/layered double hydroxide composites as cathode for alkaline hybrid batteries. Journal of Power Sources, 390, 208-214. doi:10.1016/j.jpowsour.2018.04.058

Ma, Y., Wang, Y., Xie, D., Gu, Y., Zhu, X., Zhang, H., … Zhao, H. (2018). Hierarchical MgFe-layered double hydroxide microsphere/graphene composite for simultaneous electrochemical determination of trace Pb(II) and Cd(II). Chemical Engineering Journal, 347, 953-962. doi:10.1016/j.cej.2018.04.172

Mas, V., Dieuzeide, M. L., Jobbágy, M., Baronetti, G., Amadeo, N., & Laborde, M. (2008). Ni(II)-Al(III) layered double hydroxide as catalyst precursor for ethanol steam reforming: Activation treatments and kinetic studies. Catalysis Today, 133-135, 319-323. doi:10.1016/j.cattod.2007.11.032

Romero, A., Jobbágy, M., Laborde, M., Baronetti, G., & Amadeo, N. (2010). Ni(II)–Mg(II)–Al(III) catalysts for hydrogen production from ethanol steam reforming: Influence of the activation treatments. Catalysis Today, 149(3-4), 407-412. doi:10.1016/j.cattod.2009.05.026

Vizcaíno, A. J., Lindo, M., Carrero, A., & Calles, J. A. (2012). Hydrogen production by steam reforming of ethanol using Ni catalysts based on ternary mixed oxides prepared by coprecipitation. International Journal of Hydrogen Energy, 37(2), 1985-1992. doi:10.1016/j.ijhydene.2011.04.179

Romero, A., Jobbágy, M., Laborde, M., Baronetti, G., & Amadeo, N. (2014). Ni(II)–Mg(II)–Al(III) catalysts for hydrogen production from ethanol steam reforming: Influence of the Mg content. Applied Catalysis A: General, 470, 398-404. doi:10.1016/j.apcata.2013.10.054

Llorca, J., de la Piscina, P. R., Dalmon, J.-A., Sales, J., & Homs, N. (2003). CO-free hydrogen from steam-reforming of bioethanol over ZnO-supported cobalt catalysts. Applied Catalysis B: Environmental, 43(4), 355-369. doi:10.1016/s0926-3373(02)00326-0

Llorca, J. (2004). Effect of sodium addition on the performance of Co–ZnO-based catalysts for hydrogen production from bioethanol. Journal of Catalysis, 222(2), 470-480. doi:10.1016/j.jcat.2003.12.008

Homs, N., Llorca, J., & de la Piscina, P. R. (2006). Low-temperature steam-reforming of ethanol over ZnO-supported Ni and Cu catalysts. Catalysis Today, 116(3), 361-366. doi:10.1016/j.cattod.2006.05.081

YANG, Y., MA, J., & WU, F. (2006). Production of hydrogen by steam reforming of ethanol over a Ni/ZnO catalyst. International Journal of Hydrogen Energy, 31(7), 877-882. doi:10.1016/j.ijhydene.2005.06.029

Da Costa-Serra, J. F., Guil-López, R., & Chica, A. (2010). Co/ZnO and Ni/ZnO catalysts for hydrogen production by bioethanol steam reforming. Influence of ZnO support morphology on the catalytic properties of Co and Ni active phases. International Journal of Hydrogen Energy, 35(13), 6709-6716. doi:10.1016/j.ijhydene.2010.04.013

Lee, Y.-K., Kim, K.-S., Ahn, J.-G., Son, I.-H., & Shin, W. C. (2010). Hydrogen production from ethanol over Co/ZnO catalyst in a multi-layered reformer. International Journal of Hydrogen Energy, 35(3), 1147-1151. doi:10.1016/j.ijhydene.2009.11.035

Sau, G. S., Bianco, F., Lanchi, M., Liberatore, R., Mazzocchia, C. V., Spadoni, A., … Pin, F. (2010). Cu–Zn–Al based catalysts for low temperature bioethanol steam reforming by solar energy. International Journal of Hydrogen Energy, 35(14), 7280-7287. doi:10.1016/j.ijhydene.2010.04.092

Guil-López, R., Navarro, R. M., Peña, M. A., & Fierro, J. L. G. (2011). Hydrogen production by oxidative ethanol reforming on Co, Ni and Cu ex-hydrotalcite catalysts. International Journal of Hydrogen Energy, 36(2), 1512-1523. doi:10.1016/j.ijhydene.2010.10.084

Lucrédio, A. F., Bellido, J. D. A., & Assaf, E. M. (2010). Effects of adding La and Ce to hydrotalcite-type Ni/Mg/Al catalyst precursors on ethanol steam reforming reactions. Applied Catalysis A: General, 388(1-2), 77-85. doi:10.1016/j.apcata.2010.08.026

Hu, X., & Lu, G. (2010). Acetic acid steam reforming to hydrogen over Co–Ce/Al2O3 and Co–La/Al2O3 catalysts—The promotion effect of Ce and La addition. Catalysis Communications, 12(1), 50-53. doi:10.1016/j.catcom.2010.07.015

Calles, J. A., Carrero, A., & Vizcaíno, A. J. (2009). Ce and La modification of mesoporous Cu–Ni/SBA-15 catalysts for hydrogen production through ethanol steam reforming. Microporous and Mesoporous Materials, 119(1-3), 200-207. doi:10.1016/j.micromeso.2008.10.028

SANCHEZSANCHEZ, M., NAVARRO, R., & FIERRO, J. (2007). Ethanol steam reforming over Ni/La–Al2O3 catalysts: Influence of lanthanum loading. Catalysis Today, 129(3-4), 336-345. doi:10.1016/j.cattod.2006.10.013

De Freitas Silva, T., Dias, J. A. C., Maciel, C. G., & Assaf, J. M. (2013). Ni/Al2O3catalysts: effects of the promoters Ce, La and Zr on the methane steam and oxidative reforming reactions. Catal. Sci. Technol., 3(3), 635-643. doi:10.1039/c2cy20573d

Melchor-Hernández, C., Gómez-Cortés, A., & Díaz, G. (2013). Hydrogen production by steam reforming of ethanol over nickel supported on La-modified alumina catalysts prepared by sol–gel. Fuel, 107, 828-835. doi:10.1016/j.fuel.2013.01.047

Xie, R., Fan, G., Yang, L., & Li, F. (2015). Solvent-free oxidation of ethylbenzene over hierarchical flower-like core–shell structured Co-based mixed metal oxides with significantly enhanced catalytic performance. Catalysis Science & Technology, 5(1), 540-548. doi:10.1039/c4cy00744a

Busca, G., Costantino, U., Montanari, T., Ramis, G., Resini, C., & Sisani, M. (2010). Nickel versus cobalt catalysts for hydrogen production by ethanol steam reforming: Ni–Co–Zn–Al catalysts from hydrotalcite-like precursors. International Journal of Hydrogen Energy, 35(11), 5356-5366. doi:10.1016/j.ijhydene.2010.02.124

Velu, S., & Suzuki, K. (2000). Synthesis and characterization of a new Sn-incorporated CoAl-layered double hydroxide (LDH) and catalytic performance of Co-spinel microcrystallites in the partial oxidation of methanol. Studies in Surface Science and Catalysis, 451-458. doi:10.1016/s0167-2991(00)80245-1

Wang, S.-F., Sun, G.-Z., Fang, L.-M., Lei, L., Xiang, X., & Zu, X.-T. (2015). A comparative study of ZnAl2O4 nanoparticles synthesized from different aluminum salts for use as fluorescence materials. Scientific Reports, 5(1). doi:10.1038/srep12849

Venugopal, A., Palgunadi, J., Deog, J. K., Joo, O.-S., & Shin, C.-H. (2009). Dimethyl ether synthesis on the admixed catalysts of Cu-Zn-Al-M (M=Ga, La, Y, Zr) and γ-Al2O3: The role of modifier. Journal of Molecular Catalysis A: Chemical, 302(1-2), 20-27. doi:10.1016/j.molcata.2008.11.038

Fatsikostas, A. N., Kondarides, D. ., & Verykios, X. E. (2002). Production of hydrogen for fuel cells by reformation of biomass-derived ethanol. Catalysis Today, 75(1-4), 145-155. doi:10.1016/s0920-5861(02)00057-3

FATSIKOSTAS, A. (2004). Reaction network of steam reforming of ethanol over Ni-based catalysts. Journal of Catalysis, 225(2), 439-452. doi:10.1016/j.jcat.2004.04.034

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem