- -

Effect of ultrasound intensification on the supercritical fluid extraction of phytochemicals from Agave salmiana bagasse

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of ultrasound intensification on the supercritical fluid extraction of phytochemicals from Agave salmiana bagasse

Mostrar el registro completo del ítem

Santos-Zea, L.; Gutierrez-Uribe, JA.; Benedito Fort, JJ. (2019). Effect of ultrasound intensification on the supercritical fluid extraction of phytochemicals from Agave salmiana bagasse. The Journal of Supercritical Fluids. 144:98-107. https://doi.org/10.1016/j.supflu.2018.10.013

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160219

Ficheros en el ítem

Metadatos del ítem

Título: Effect of ultrasound intensification on the supercritical fluid extraction of phytochemicals from Agave salmiana bagasse
Autor: Santos-Zea, Liliana Gutierrez-Uribe, Janet A. Benedito Fort, José Javier
Entidad UPV: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Fecha difusión:
Resumen:
[EN] The aim of this work was to evaluate the effect of ultrasound on supercritical fluid extraction for the recovery of antioxidants and saponins from agave bagasse as a green extraction technique. When a mass load of ...[+]
Palabras clave: Antioxidants , Supercritical fluid extraction , Saponins , Ultrasound-assisted extraction , Ultrasound transducers
Derechos de uso: Reserva de todos los derechos
Fuente:
The Journal of Supercritical Fluids. (issn: 0896-8446 )
DOI: 10.1016/j.supflu.2018.10.013
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.supflu.2018.10.013
Código del Proyecto:
info:eu-repo/grantAgreement/CONACyT//270166/
Agradecimientos:
The authors are grateful for the financial support from CONACYT CVU 270166, Mexico; NutriOmics Chair from Tecnologico de Monterrey, Mexico; and Nutrigenomics Research Chair from Fundacion FEMSA, Mexico. We thank the technical ...[+]
Tipo: Artículo

References

Pereira, C. G., & Meireles, M. A. A. (2009). Supercritical Fluid Extraction of Bioactive Compounds: Fundamentals, Applications and Economic Perspectives. Food and Bioprocess Technology, 3(3), 340-372. doi:10.1007/s11947-009-0263-2

HERRERO, M., CIFUENTES, A., & IBANEZ, E. (2006). Sub- and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgaeA review. Food Chemistry, 98(1), 136-148. doi:10.1016/j.foodchem.2005.05.058

Farías-Campomanes, A. M., Rostagno, M. A., & Meireles, M. A. A. (2013). Production of polyphenol extracts from grape bagasse using supercritical fluids: Yield, extract composition and economic evaluation. The Journal of Supercritical Fluids, 77, 70-78. doi:10.1016/j.supflu.2013.02.006 [+]
Pereira, C. G., & Meireles, M. A. A. (2009). Supercritical Fluid Extraction of Bioactive Compounds: Fundamentals, Applications and Economic Perspectives. Food and Bioprocess Technology, 3(3), 340-372. doi:10.1007/s11947-009-0263-2

HERRERO, M., CIFUENTES, A., & IBANEZ, E. (2006). Sub- and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgaeA review. Food Chemistry, 98(1), 136-148. doi:10.1016/j.foodchem.2005.05.058

Farías-Campomanes, A. M., Rostagno, M. A., & Meireles, M. A. A. (2013). Production of polyphenol extracts from grape bagasse using supercritical fluids: Yield, extract composition and economic evaluation. The Journal of Supercritical Fluids, 77, 70-78. doi:10.1016/j.supflu.2013.02.006

Cruz, M. V., Paiva, A., Lisboa, P., Freitas, F., Alves, V. D., Simões, P., … Reis, M. A. M. (2014). Production of polyhydroxyalkanoates from spent coffee grounds oil obtained by supercritical fluid extraction technology. Bioresource Technology, 157, 360-363. doi:10.1016/j.biortech.2014.02.013

Riera, E., Blanco, A., García, J., Benedito, J., Mulet, A., Gallego-Juárez, J. A., & Blasco, M. (2010). High-power ultrasonic system for the enhancement of mass transfer in supercritical CO2 extraction processes. Physics Procedia, 3(1), 141-146. doi:10.1016/j.phpro.2010.01.020

Rodríguez, Ó., Ortuño, C., Simal, S., Benedito, J., Femenia, A., & Rosselló, C. (2014). Acoustically assisted supercritical CO2 extraction of cocoa butter: Effects on kinetics and quality. The Journal of Supercritical Fluids, 94, 30-37. doi:10.1016/j.supflu.2014.06.017

Santos-Zea, L., Antunes-Ricardo, M., Gutierrez-Uribe, J. A., García-Pérez, J. V., & Benedito, J. (2018). Effect of ultrasound transducer design on the acoustically-assisted supercritical fluid extraction of antioxidants from oregano. Ultrasonics Sonochemistry, 47, 47-56. doi:10.1016/j.ultsonch.2018.04.019

Pasquel Reátegui, J. L., Machado, A. P. da F., Barbero, G. F., Rezende, C. A., & Martínez, J. (2014). Extraction of antioxidant compounds from blackberry (Rubus sp.) bagasse using supercritical CO2 assisted by ultrasound. The Journal of Supercritical Fluids, 94, 223-233. doi:10.1016/j.supflu.2014.07.019

Santos, P., Aguiar, A. C., Barbero, G. F., Rezende, C. A., & Martínez, J. (2015). Supercritical carbon dioxide extraction of capsaicinoids from malagueta pepper (Capsicum frutescens L.) assisted by ultrasound. Ultrasonics Sonochemistry, 22, 78-88. doi:10.1016/j.ultsonch.2014.05.001

Dias, A. L. B., Arroio Sergio, C. S., Santos, P., Barbero, G. F., Rezende, C. A., & Martínez, J. (2016). Effect of ultrasound on the supercritical CO2 extraction of bioactive compounds from dedo de moça pepper (Capsicum baccatum L. var. pendulum). Ultrasonics Sonochemistry, 31, 284-294. doi:10.1016/j.ultsonch.2016.01.013

Balachandran, S., Kentish, S. E., Mawson, R., & Ashokkumar, M. (2006). Ultrasonic enhancement of the supercritical extraction from ginger. Ultrasonics Sonochemistry, 13(6), 471-479. doi:10.1016/j.ultsonch.2005.11.006

Riera, E., Golás, Y., Blanco, A., Gallego, J. A., Blasco, M., & Mulet, A. (2004). Mass transfer enhancement in supercritical fluids extraction by means of power ultrasound. Ultrasonics Sonochemistry, 11(3-4), 241-244. doi:10.1016/j.ultsonch.2004.01.019

Bitencourt, R. G., Queiroga, C. L., Montanari Junior, Í., & Cabral, F. A. (2014). Fractionated extraction of saponins from Brazilian ginseng by sequential process using supercritical CO2, ethanol and water. The Journal of Supercritical Fluids, 92, 272-281. doi:10.1016/j.supflu.2014.06.009

Luo, D., Qiu, T., & Lu, Q. (2007). Ultrasound-assisted extraction of ginsenosides in supercritical CO2 reverse microemulsions. Journal of the Science of Food and Agriculture, 87(3), 431-436. doi:10.1002/jsfa.2716

Hurtado-Benavides, A., Dorado A., D., & Sánchez-Camargo, A. del P. (2016). Study of the fatty acid profile and the aroma composition of oil obtained from roasted Colombian coffee beans by supercritical fluid extraction. The Journal of Supercritical Fluids, 113, 44-52. doi:10.1016/j.supflu.2016.03.008

Hu, A., Zhao, S., Liang, H., Qiu, T., & Chen, G. (2007). Ultrasound assisted supercritical fluid extraction of oil and coixenolide from adlay seed. Ultrasonics Sonochemistry, 14(2), 219-224. doi:10.1016/j.ultsonch.2006.03.005

Fornari, T., Vicente, G., Vázquez, E., García-Risco, M. R., & Reglero, G. (2012). Isolation of essential oil from different plants and herbs by supercritical fluid extraction. Journal of Chromatography A, 1250, 34-48. doi:10.1016/j.chroma.2012.04.051

Antunes-Ricardo, M., Gutiérrez-Uribe, J. A., & Guajardo-Flores, D. (2017). Extraction of isorhamnetin conjugates from Opuntia ficus-indica (L.) Mill using supercritical fluids. The Journal of Supercritical Fluids, 119, 58-63. doi:10.1016/j.supflu.2016.09.003

A., N.-Z., & F., S.-T. (2009). Agaves as a Raw Material: Recent Technologies and Applications. Recent Patents on Biotechnology, 3(3), 185-191. doi:10.2174/187220809789389144

Escalante, A., López Soto, D. R., Velázquez Gutiérrez, J. E., Giles-Gómez, M., Bolívar, F., & López-Munguía, A. (2016). Pulque, a Traditional Mexican Alcoholic Fermented Beverage: Historical, Microbiological, and Technical Aspects. Frontiers in Microbiology, 7. doi:10.3389/fmicb.2016.01026

Caspeta, L., Caro-Bermúdez, M. A., Ponce-Noyola, T., & Martinez, A. (2014). Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol. Applied Energy, 113, 277-286. doi:10.1016/j.apenergy.2013.07.036

Pinos-Rodríguez, J. M., Aguirre-Rivera, J. R., García-López, J. C., Rivera-Miranda, M. T., González-Muñoz, S., López-Aguirre, S., & Chávez-Villalobos, D. (2006). Use of «Maguey» (Agave salmianaOtto ex. Salm-Dick) as Forage for Ewes. Journal of Applied Animal Research, 30(2), 101-107. doi:10.1080/09712119.2006.9706596

Figueroa, L., Santos-Zea, L., Escalante, A., & Gutiérrez-Uribe, J. (2017). Mass Spectrometry-Based Metabolomics of Agave Sap (Agave salmiana) after Its Inoculation with Microorganisms Isolated from Agave Sap Concentrate Selected to Enhance Anticancer Activity. Sustainability, 9(11), 2095. doi:10.3390/su9112095

Puente-Garza, C. A., Espinosa-Leal, C. A., & García-Lara, S. (2018). Steroidal Saponin and Flavonol Content and Antioxidant Activity during Sporophyte Development of Maguey (Agave salmiana). Plant Foods for Human Nutrition, 73(4), 287-294. doi:10.1007/s11130-018-0684-z

Pulido, R., Bravo, L., & Saura-Calixto, F. (2000). Antioxidant Activity of Dietary Polyphenols As Determined by a Modified Ferric Reducing/Antioxidant Power Assay. Journal of Agricultural and Food Chemistry, 48(8), 3396-3402. doi:10.1021/jf9913458

Santos-Zea, L., Leal-Díaz, A. M., Jacobo-Velázquez, D. A., Rodríguez-Rodríguez, J., García-Lara, S., & Gutiérrez-Uribe, J. A. (2016). Characterization of concentrated agave saps and storage effects on browning, antioxidant capacity and amino acid content. Journal of Food Composition and Analysis, 45, 113-120. doi:10.1016/j.jfca.2015.10.005

Santos-Zea, L., Rosas-Pérez, A. M., Leal-Díaz, A. M., & Gutiérrez-Uribe, J. A. (2016). Variability in Saponin Content, Cancer Antiproliferative Activity and Physicochemical Properties of Concentrated Agave Sap. Journal of Food Science, 81(8), H2069-H2075. doi:10.1111/1750-3841.13376

Mancilla-Margalli, N. A., & López, M. G. (2002). Generation of Maillard Compounds from Inulin during the Thermal Processing of Agave tequilana Weber Var. azul. Journal of Agricultural and Food Chemistry, 50(4), 806-812. doi:10.1021/jf0110295

Monroy, Y. M., Rodrigues, R. A. F., Sartoratto, A., & Cabral, F. A. (2016). Influence of ethanol, water, and their mixtures as co-solvents of the supercritical carbon dioxide in the extraction of phenolics from purple corn cob ( Zea mays L.). The Journal of Supercritical Fluids, 118, 11-18. doi:10.1016/j.supflu.2016.07.019

Li, B., Xu, Y., Jin, Y.-X., Wu, Y.-Y., & Tu, Y.-Y. (2010). Response surface optimization of supercritical fluid extraction of kaempferol glycosides from tea seed cake. Industrial Crops and Products, 32(2), 123-128. doi:10.1016/j.indcrop.2010.04.002

Liu, S., Yang, F., Zhang, C., Ji, H., Hong, P., & Deng, C. (2009). Optimization of process parameters for supercritical carbon dioxide extraction of Passiflora seed oil by response surface methodology. The Journal of Supercritical Fluids, 48(1), 9-14. doi:10.1016/j.supflu.2008.09.013

Barrales, F. M., Rezende, C. A., & Martínez, J. (2015). Supercritical CO2 extraction of passion fruit (Passiflora edulis sp.) seed oil assisted by ultrasound. The Journal of Supercritical Fluids, 104, 183-192. doi:10.1016/j.supflu.2015.06.006

Eric, K., Raymond, L. V., Huang, M., Cheserek, M. J., Hayat, K., Savio, N. D., … Zhang, X. (2013). Sensory attributes and antioxidant capacity of Maillard reaction products derived from xylose, cysteine and sunflower protein hydrolysate model system. Food Research International, 54(2), 1437-1447. doi:10.1016/j.foodres.2013.09.034

Sun, Y., Wei, L., Wang, J., Bi, J., Liu, Z., Wang, Y., & Guo, Z. (2010). Optimization of supercritical fluid extraction of saikosaponins from Bupleurum falcatum with orthogonal array design. Journal of Separation Science, 33(8), 1161-1166. doi:10.1002/jssc.200900529

Chen, Y., Xie, M.-Y., & Gong, X.-F. (2007). Microwave-assisted extraction used for the isolation of total triterpenoid saponins from Ganoderma atrum. Journal of Food Engineering, 81(1), 162-170. doi:10.1016/j.jfoodeng.2006.10.018

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem