- -

Fuel economy optimization from the interaction between engine oil and driving conditions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fuel economy optimization from the interaction between engine oil and driving conditions

Mostrar el registro completo del ítem

Tormos, B.; Pla Moreno, B.; Bastidas-Moncayo, KS.; Ramirez-Roa, LA.; Perez, T. (2019). Fuel economy optimization from the interaction between engine oil and driving conditions. Tribology International. 138:263-270. https://doi.org/10.1016/j.triboint.2019.05.042

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160220

Ficheros en el ítem

Metadatos del ítem

Título: Fuel economy optimization from the interaction between engine oil and driving conditions
Autor: Tormos, B. Pla Moreno, Benjamín Bastidas-Moncayo, Kared Sophia Ramirez-Roa, Leonardo Andrés PEREZ, T.
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] Low viscosity engine oils have shown to be an effective solution to the fuel consumption reduction target, however, their potential is closely linked to the vehicle and engine design and to the real driving conditions. ...[+]
Palabras clave: Low viscosity engine oils , Friction modifier , Fuel economy , Driving cycles
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Tribology International. (issn: 0301-679X )
DOI: 10.1016/j.triboint.2019.05.042
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.triboint.2019.05.042
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//PAID-01-17/
info:eu-repo/grantAgreement/MINECO//TRA2015-70785-R/ES/ANALISIS DE NUEVAS FORMULACIONES DE LUBRICANTES PARA EL AUMENTO DE LA EFICIENCIA DE MOTORES DE AUTOMOCION/
Agradecimientos:
The authors would like to thank to the Spanish Ministerio de Economia y Competitividad for supporting the EFICOIL project (TRA2015-70785-R) and to the program Ayudas de Investigacion y Desarrollo (PAID-01-17) of the ...[+]
Tipo: Artículo

References

Edwards, M. R., Klemun, M. M., Kim, H. C., Wallington, T. J., Winkler, S. L., Tamor, M. A., & Trancik, J. E. (2017). Vehicle emissions of short-lived and long-lived climate forcers: trends and tradeoffs. Faraday Discussions, 200, 453-474. doi:10.1039/c7fd00063d

Dente, S. M. R., & Tavasszy, L. (2018). Policy oriented emission factors for road freight transport. Transportation Research Part D: Transport and Environment, 61, 33-41. doi:10.1016/j.trd.2017.03.021

Hofer, C., Jäger, G., & Füllsack, M. (2018). Large scale simulation of CO2 emissions caused by urban car traffic: An agent-based network approach. Journal of Cleaner Production, 183, 1-10. doi:10.1016/j.jclepro.2018.02.113 [+]
Edwards, M. R., Klemun, M. M., Kim, H. C., Wallington, T. J., Winkler, S. L., Tamor, M. A., & Trancik, J. E. (2017). Vehicle emissions of short-lived and long-lived climate forcers: trends and tradeoffs. Faraday Discussions, 200, 453-474. doi:10.1039/c7fd00063d

Dente, S. M. R., & Tavasszy, L. (2018). Policy oriented emission factors for road freight transport. Transportation Research Part D: Transport and Environment, 61, 33-41. doi:10.1016/j.trd.2017.03.021

Hofer, C., Jäger, G., & Füllsack, M. (2018). Large scale simulation of CO2 emissions caused by urban car traffic: An agent-based network approach. Journal of Cleaner Production, 183, 1-10. doi:10.1016/j.jclepro.2018.02.113

Lepitzki, J., & Axsen, J. (2018). The role of a low carbon fuel standard in achieving long-term GHG reduction targets. Energy Policy, 119, 423-440. doi:10.1016/j.enpol.2018.03.067

Solaymani, S. (2019). CO2 emissions patterns in 7 top carbon emitter economies: The case of transport sector. Energy, 168, 989-1001. doi:10.1016/j.energy.2018.11.145

European Union, The European Union explained: transport, EU publications doi:10.2775/13082.

Eurostat statistics explained. road freight transport statistics, [Accessed: 10/01/2019]. URL https://ec.europa.eu/eurostat/statistics-explained/index.php/Road_freight_transport_statistics.

Kin, B., Spoor, J., Verlinde, S., Macharis, C., & Van Woensel, T. (2018). Modelling alternative distribution set-ups for fragmented last mile transport: Towards more efficient and sustainable urban freight transport. Case Studies on Transport Policy, 6(1), 125-132. doi:10.1016/j.cstp.2017.11.009

Edwards, J. B., McKinnon, A. C., & Cullinane, S. L. (2010). Comparative analysis of the carbon footprints of conventional and online retailing. International Journal of Physical Distribution & Logistics Management, 40(1/2), 103-123. doi:10.1108/09600031011018055

Manerba, D., Mansini, R., & Zanotti, R. (2018). Attended Home Delivery: reducing last-mile environmental impact by changing customer habits. IFAC-PapersOnLine, 51(5), 55-60. doi:10.1016/j.ifacol.2018.06.199

Gao, J., Chen, H., Tian, G., Ma, C., & Zhu, F. (2019). An analysis of energy flow in a turbocharged diesel engine of a heavy truck and potentials of improving fuel economy and reducing exhaust emissions. Energy Conversion and Management, 184, 456-465. doi:10.1016/j.enconman.2019.01.053

O. Delgado, F. Rodríguez, R. Muncrief, Fuel efficiency technology in european heavy-duty vehicles: baseline and potential for the 2020 2030 time frame, Tech. rep., Int. Counc. Clean. Transport.(2017) https://www.theicct.org/publications/fuel-efficiency-technology-european-heavy-duty-vehicles-baseline-and-potential-2020.

J. Norris, G. Escher, Heavy duty vehicles technology potential and cost study, Tech. rep., Int. Counc. Clean. Transport. (2017)https://www.theicct.org/publications/heavy-duty-vehicles-technology-potential-and-cost-study.

Ezhilmaran, V., Vasa, N. J., & Vijayaraghavan, L. (2018). Investigation on generation of laser assisted dimples on piston ring surface and influence of dimple parameters on friction. Surface and Coatings Technology, 335, 314-326. doi:10.1016/j.surfcoat.2017.12.052

Arslan, A., Masjuki, H. H., Kalam, M. A., Varman, M., Mosarof, M. H., Mufti, R. A., … Khurram, M. (2017). Investigation of laser texture density and diameter on the tribological behavior of hydrogenated DLC coating with line contact configuration. Surface and Coatings Technology, 322, 31-37. doi:10.1016/j.surfcoat.2017.05.037

Marian, M., Tremmel, S., & Wartzack, S. (2018). Microtextured surfaces in higher loaded rolling-sliding EHL line-contacts. Tribology International, 127, 420-432. doi:10.1016/j.triboint.2018.06.024

Triantafyllopoulos, G., Kontses, A., Tsokolis, D., Ntziachristos, L., & Samaras, Z. (2017). Potential of energy efficiency technologies in reducing vehicle consumption under type approval and real world conditions. Energy, 140, 365-373. doi:10.1016/j.energy.2017.09.023

Macián, V., Tormos, B., Bermúdez, V., & Ramírez, L. (2014). Assessment of the effect of low viscosity oils usage on a light duty diesel engine fuel consumption in stationary and transient conditions. Tribology International, 79, 132-139. doi:10.1016/j.triboint.2014.06.003

Macián, V., Tormos, B., Ruíz, S., & Ramírez, L. (2015). Potential of low viscosity oils to reduce CO2 emissions and fuel consumption of urban buses fleets. Transportation Research Part D: Transport and Environment, 39, 76-88. doi:10.1016/j.trd.2015.06.006

Souza de Carvalho, M. J., Rudolf Seidl, P., Pereira Belchior, C. R., & Ricardo Sodré, J. (2010). Lubricant viscosity and viscosity improver additive effects on diesel fuel economy. Tribology International, 43(12), 2298-2302. doi:10.1016/j.triboint.2010.07.014

Macián, V., Tormos, B., Ruiz, S., & Miró, G. (2016). Low viscosity engine oils: Study of wear effects and oil key parameters in a heavy duty engine fleet test. Tribology International, 94, 240-248. doi:10.1016/j.triboint.2015.08.028

Taylor, R., Selby, K., Herrera, R., & Green, D. A. (2011). The Effect of Engine, Axle and Transmission Lubricant, and Operating Conditions on Heavy Duty Diesel Fuel Economy: Part 2: Predictions. SAE International Journal of Fuels and Lubricants, 5(1), 488-495. doi:10.4271/2011-01-2130

Permude, A., Pathak, M., Kumar, V., & Singh, S. (2012). Influence of Low Viscosity Lubricating Oils on Fuel Economy and Durability of Passenger Car Diesel Engine. SAE International Journal of Fuels and Lubricants, 5(3), 1426-1435. doi:10.4271/2012-28-0010

Tormos, B., Ramírez, L., Johansson, J., Björling, M., & Larsson, R. (2017). Fuel consumption and friction benefits of low viscosity engine oils for heavy duty applications. Tribology International, 110, 23-34. doi:10.1016/j.triboint.2017.02.007

Van Dam, W., Miller, T., Parsons, G. M., & Takeuchi, Y. (2011). The Impact of Lubricant Viscosity and Additive Chemistry on Fuel Economy in Heavy Duty Diesel Engines. SAE International Journal of Fuels and Lubricants, 5(1), 459-469. doi:10.4271/2011-01-2124

Skjoedt, M., Butts, R., Assanis, D. N., & Bohac, S. V. (2008). Effects of oil properties on spark-ignition gasoline engine friction. Tribology International, 41(6), 556-563. doi:10.1016/j.triboint.2007.12.001

Rao, L., Zhang, Y., Kook, S., Kim, K. S., & Kweon, C.-B. (2019). Understanding in-cylinder soot reduction in the use of high pressure fuel injection in a small-bore diesel engine. Proceedings of the Combustion Institute, 37(4), 4839-4846. doi:10.1016/j.proci.2018.09.013

Fan, C., Song, C., Lv, G., Wei, J., Zhang, X., Qiao, Y., & Liu, Y. (2019). Impact of post-injection strategy on the physicochemical properties and reactivity of diesel in-cylinder soot. Proceedings of the Combustion Institute, 37(4), 4821-4829. doi:10.1016/j.proci.2018.08.001

Yamamoto, K., Kotaka, A., & Umehara, K. (2010). Additives for Improving the Fuel Economy of Diesel Engine Systems. Tribology Online, 5(4), 195-198. doi:10.2474/trol.5.195

Marx, N., Ponjavic, A., Taylor, R. I., & Spikes, H. A. (2017). Study of Permanent Shear Thinning of VM Polymer Solutions. Tribology Letters, 65(3). doi:10.1007/s11249-017-0888-7

Cui, J., Oberoi, S., Goldmints, I., & Briggs, S. (2014). Field and Bench Study of Shear Stability of Heavy Duty Diesel Lubricants. SAE International Journal of Fuels and Lubricants, 7(3), 882-889. doi:10.4271/2014-01-2791

Rizzoni, G., Guzzella, L., & Baumann, B. M. (1999). Unified modeling of hybrid electric vehicle drivetrains. IEEE/ASME Transactions on Mechatronics, 4(3), 246-257. doi:10.1109/3516.789683

Green, D. A., Selby, K., Mainwaring, R., & Herrera, R. (2011). The Effect of Engine, Axle and Transmission Lubricant, and Operating Conditions on Heavy Duty Diesel Fuel Economy. Part 1: Measurements. SAE International Journal of Fuels and Lubricants, 5(1), 480-487. doi:10.4271/2011-01-2129

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem