Mostrar el registro sencillo del ítem
dc.contributor.author | Tormos, B. | es_ES |
dc.contributor.author | Pla Moreno, Benjamín | es_ES |
dc.contributor.author | Bastidas-Moncayo, Kared Sophia | es_ES |
dc.contributor.author | Ramirez-Roa, Leonardo Andrés | es_ES |
dc.contributor.author | PEREZ, T. | es_ES |
dc.date.accessioned | 2021-01-29T04:31:16Z | |
dc.date.available | 2021-01-29T04:31:16Z | |
dc.date.issued | 2019-10 | es_ES |
dc.identifier.issn | 0301-679X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160220 | |
dc.description.abstract | [EN] Low viscosity engine oils have shown to be an effective solution to the fuel consumption reduction target, however, their potential is closely linked to the vehicle and engine design and to the real driving conditions. In this study the interaction between engine oil and driving conditions of two urban routes and one rural route in Spain and the United Kingdom has been put to test with the aim to evaluate their joint effect over fuel economy of a freight transport vehicle. In a first approximation, six different oil formulations, three of them belonging to the new API CK-4 and FA-4 categories and two with molybdenum-based friction modifier, were tested under stationary conditions with a medium-duty diesel engine. Followed by tests under real driving conditions of a freight transport vehicle, developed by means of computer simulations with an adjusted vehicle model, taking the fuel consumption maps of the six oil formulations, vehicle characteristics and the selected driving cycles as inputs to the model. Results of engine bench tests and simulations with oils of lower HTHS viscosity showed fuel consumption reduction values as expected. However unexpected results were found between the oils with molybdenum-based friction modifier added to their formulation. | es_ES |
dc.description.sponsorship | The authors would like to thank to the Spanish Ministerio de Economia y Competitividad for supporting the EFICOIL project (TRA2015-70785-R) and to the program Ayudas de Investigacion y Desarrollo (PAID-01-17) of the Universitat Politecnica de Valencia. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Tribology International | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Low viscosity engine oils | es_ES |
dc.subject | Friction modifier | es_ES |
dc.subject | Fuel economy | es_ES |
dc.subject | Driving cycles | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Fuel economy optimization from the interaction between engine oil and driving conditions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.triboint.2019.05.042 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-01-17/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TRA2015-70785-R/ES/ANALISIS DE NUEVAS FORMULACIONES DE LUBRICANTES PARA EL AUMENTO DE LA EFICIENCIA DE MOTORES DE AUTOMOCION/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Tormos, B.; Pla Moreno, B.; Bastidas-Moncayo, KS.; Ramirez-Roa, LA.; Perez, T. (2019). Fuel economy optimization from the interaction between engine oil and driving conditions. Tribology International. 138:263-270. https://doi.org/10.1016/j.triboint.2019.05.042 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.triboint.2019.05.042 | es_ES |
dc.description.upvformatpinicio | 263 | es_ES |
dc.description.upvformatpfin | 270 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 138 | es_ES |
dc.relation.pasarela | S\391871 | es_ES |
dc.contributor.funder | Repsol | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Edwards, M. R., Klemun, M. M., Kim, H. C., Wallington, T. J., Winkler, S. L., Tamor, M. A., & Trancik, J. E. (2017). Vehicle emissions of short-lived and long-lived climate forcers: trends and tradeoffs. Faraday Discussions, 200, 453-474. doi:10.1039/c7fd00063d | es_ES |
dc.description.references | Dente, S. M. R., & Tavasszy, L. (2018). Policy oriented emission factors for road freight transport. Transportation Research Part D: Transport and Environment, 61, 33-41. doi:10.1016/j.trd.2017.03.021 | es_ES |
dc.description.references | Hofer, C., Jäger, G., & Füllsack, M. (2018). Large scale simulation of CO2 emissions caused by urban car traffic: An agent-based network approach. Journal of Cleaner Production, 183, 1-10. doi:10.1016/j.jclepro.2018.02.113 | es_ES |
dc.description.references | Lepitzki, J., & Axsen, J. (2018). The role of a low carbon fuel standard in achieving long-term GHG reduction targets. Energy Policy, 119, 423-440. doi:10.1016/j.enpol.2018.03.067 | es_ES |
dc.description.references | Solaymani, S. (2019). CO2 emissions patterns in 7 top carbon emitter economies: The case of transport sector. Energy, 168, 989-1001. doi:10.1016/j.energy.2018.11.145 | es_ES |
dc.description.references | European Union, The European Union explained: transport, EU publications doi:10.2775/13082. | es_ES |
dc.description.references | Eurostat statistics explained. road freight transport statistics, [Accessed: 10/01/2019]. URL https://ec.europa.eu/eurostat/statistics-explained/index.php/Road_freight_transport_statistics. | es_ES |
dc.description.references | Kin, B., Spoor, J., Verlinde, S., Macharis, C., & Van Woensel, T. (2018). Modelling alternative distribution set-ups for fragmented last mile transport: Towards more efficient and sustainable urban freight transport. Case Studies on Transport Policy, 6(1), 125-132. doi:10.1016/j.cstp.2017.11.009 | es_ES |
dc.description.references | Edwards, J. B., McKinnon, A. C., & Cullinane, S. L. (2010). Comparative analysis of the carbon footprints of conventional and online retailing. International Journal of Physical Distribution & Logistics Management, 40(1/2), 103-123. doi:10.1108/09600031011018055 | es_ES |
dc.description.references | Manerba, D., Mansini, R., & Zanotti, R. (2018). Attended Home Delivery: reducing last-mile environmental impact by changing customer habits. IFAC-PapersOnLine, 51(5), 55-60. doi:10.1016/j.ifacol.2018.06.199 | es_ES |
dc.description.references | Gao, J., Chen, H., Tian, G., Ma, C., & Zhu, F. (2019). An analysis of energy flow in a turbocharged diesel engine of a heavy truck and potentials of improving fuel economy and reducing exhaust emissions. Energy Conversion and Management, 184, 456-465. doi:10.1016/j.enconman.2019.01.053 | es_ES |
dc.description.references | O. Delgado, F. Rodríguez, R. Muncrief, Fuel efficiency technology in european heavy-duty vehicles: baseline and potential for the 2020 2030 time frame, Tech. rep., Int. Counc. Clean. Transport.(2017) https://www.theicct.org/publications/fuel-efficiency-technology-european-heavy-duty-vehicles-baseline-and-potential-2020. | es_ES |
dc.description.references | J. Norris, G. Escher, Heavy duty vehicles technology potential and cost study, Tech. rep., Int. Counc. Clean. Transport. (2017)https://www.theicct.org/publications/heavy-duty-vehicles-technology-potential-and-cost-study. | es_ES |
dc.description.references | Ezhilmaran, V., Vasa, N. J., & Vijayaraghavan, L. (2018). Investigation on generation of laser assisted dimples on piston ring surface and influence of dimple parameters on friction. Surface and Coatings Technology, 335, 314-326. doi:10.1016/j.surfcoat.2017.12.052 | es_ES |
dc.description.references | Arslan, A., Masjuki, H. H., Kalam, M. A., Varman, M., Mosarof, M. H., Mufti, R. A., … Khurram, M. (2017). Investigation of laser texture density and diameter on the tribological behavior of hydrogenated DLC coating with line contact configuration. Surface and Coatings Technology, 322, 31-37. doi:10.1016/j.surfcoat.2017.05.037 | es_ES |
dc.description.references | Marian, M., Tremmel, S., & Wartzack, S. (2018). Microtextured surfaces in higher loaded rolling-sliding EHL line-contacts. Tribology International, 127, 420-432. doi:10.1016/j.triboint.2018.06.024 | es_ES |
dc.description.references | Triantafyllopoulos, G., Kontses, A., Tsokolis, D., Ntziachristos, L., & Samaras, Z. (2017). Potential of energy efficiency technologies in reducing vehicle consumption under type approval and real world conditions. Energy, 140, 365-373. doi:10.1016/j.energy.2017.09.023 | es_ES |
dc.description.references | Macián, V., Tormos, B., Bermúdez, V., & Ramírez, L. (2014). Assessment of the effect of low viscosity oils usage on a light duty diesel engine fuel consumption in stationary and transient conditions. Tribology International, 79, 132-139. doi:10.1016/j.triboint.2014.06.003 | es_ES |
dc.description.references | Macián, V., Tormos, B., Ruíz, S., & Ramírez, L. (2015). Potential of low viscosity oils to reduce CO2 emissions and fuel consumption of urban buses fleets. Transportation Research Part D: Transport and Environment, 39, 76-88. doi:10.1016/j.trd.2015.06.006 | es_ES |
dc.description.references | Souza de Carvalho, M. J., Rudolf Seidl, P., Pereira Belchior, C. R., & Ricardo Sodré, J. (2010). Lubricant viscosity and viscosity improver additive effects on diesel fuel economy. Tribology International, 43(12), 2298-2302. doi:10.1016/j.triboint.2010.07.014 | es_ES |
dc.description.references | Macián, V., Tormos, B., Ruiz, S., & Miró, G. (2016). Low viscosity engine oils: Study of wear effects and oil key parameters in a heavy duty engine fleet test. Tribology International, 94, 240-248. doi:10.1016/j.triboint.2015.08.028 | es_ES |
dc.description.references | Taylor, R., Selby, K., Herrera, R., & Green, D. A. (2011). The Effect of Engine, Axle and Transmission Lubricant, and Operating Conditions on Heavy Duty Diesel Fuel Economy: Part 2: Predictions. SAE International Journal of Fuels and Lubricants, 5(1), 488-495. doi:10.4271/2011-01-2130 | es_ES |
dc.description.references | Permude, A., Pathak, M., Kumar, V., & Singh, S. (2012). Influence of Low Viscosity Lubricating Oils on Fuel Economy and Durability of Passenger Car Diesel Engine. SAE International Journal of Fuels and Lubricants, 5(3), 1426-1435. doi:10.4271/2012-28-0010 | es_ES |
dc.description.references | Tormos, B., Ramírez, L., Johansson, J., Björling, M., & Larsson, R. (2017). Fuel consumption and friction benefits of low viscosity engine oils for heavy duty applications. Tribology International, 110, 23-34. doi:10.1016/j.triboint.2017.02.007 | es_ES |
dc.description.references | Van Dam, W., Miller, T., Parsons, G. M., & Takeuchi, Y. (2011). The Impact of Lubricant Viscosity and Additive Chemistry on Fuel Economy in Heavy Duty Diesel Engines. SAE International Journal of Fuels and Lubricants, 5(1), 459-469. doi:10.4271/2011-01-2124 | es_ES |
dc.description.references | Skjoedt, M., Butts, R., Assanis, D. N., & Bohac, S. V. (2008). Effects of oil properties on spark-ignition gasoline engine friction. Tribology International, 41(6), 556-563. doi:10.1016/j.triboint.2007.12.001 | es_ES |
dc.description.references | Rao, L., Zhang, Y., Kook, S., Kim, K. S., & Kweon, C.-B. (2019). Understanding in-cylinder soot reduction in the use of high pressure fuel injection in a small-bore diesel engine. Proceedings of the Combustion Institute, 37(4), 4839-4846. doi:10.1016/j.proci.2018.09.013 | es_ES |
dc.description.references | Fan, C., Song, C., Lv, G., Wei, J., Zhang, X., Qiao, Y., & Liu, Y. (2019). Impact of post-injection strategy on the physicochemical properties and reactivity of diesel in-cylinder soot. Proceedings of the Combustion Institute, 37(4), 4821-4829. doi:10.1016/j.proci.2018.08.001 | es_ES |
dc.description.references | Yamamoto, K., Kotaka, A., & Umehara, K. (2010). Additives for Improving the Fuel Economy of Diesel Engine Systems. Tribology Online, 5(4), 195-198. doi:10.2474/trol.5.195 | es_ES |
dc.description.references | Marx, N., Ponjavic, A., Taylor, R. I., & Spikes, H. A. (2017). Study of Permanent Shear Thinning of VM Polymer Solutions. Tribology Letters, 65(3). doi:10.1007/s11249-017-0888-7 | es_ES |
dc.description.references | Cui, J., Oberoi, S., Goldmints, I., & Briggs, S. (2014). Field and Bench Study of Shear Stability of Heavy Duty Diesel Lubricants. SAE International Journal of Fuels and Lubricants, 7(3), 882-889. doi:10.4271/2014-01-2791 | es_ES |
dc.description.references | Rizzoni, G., Guzzella, L., & Baumann, B. M. (1999). Unified modeling of hybrid electric vehicle drivetrains. IEEE/ASME Transactions on Mechatronics, 4(3), 246-257. doi:10.1109/3516.789683 | es_ES |
dc.description.references | Green, D. A., Selby, K., Mainwaring, R., & Herrera, R. (2011). The Effect of Engine, Axle and Transmission Lubricant, and Operating Conditions on Heavy Duty Diesel Fuel Economy. Part 1: Measurements. SAE International Journal of Fuels and Lubricants, 5(1), 480-487. doi:10.4271/2011-01-2129 | es_ES |