- -

Efect of Different Compatibilizers on Injection-Molded Green Fiber-Reinforced Polymers Based on Poly(lactic acid)-Maleinized Linseed Oil System and Sheep Wool

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Efect of Different Compatibilizers on Injection-Molded Green Fiber-Reinforced Polymers Based on Poly(lactic acid)-Maleinized Linseed Oil System and Sheep Wool

Show full item record

Pawlak, F.; Aldas-Carrasco, MF.; López-Martínez, J.; Samper, M. (2019). Efect of Different Compatibilizers on Injection-Molded Green Fiber-Reinforced Polymers Based on Poly(lactic acid)-Maleinized Linseed Oil System and Sheep Wool. Polymers. 11(9):1-22. https://doi.org/10.3390/polym11091514

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160294

Files in this item

Item Metadata

Title: Efect of Different Compatibilizers on Injection-Molded Green Fiber-Reinforced Polymers Based on Poly(lactic acid)-Maleinized Linseed Oil System and Sheep Wool
Author: Pawlak, Franciszek Aldas-Carrasco, Miguel Fernando López-Martínez, Juan Samper, María-Dolores
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Issued date:
Abstract:
[EN] A method to modify polymers is that of introducing fibers in a matrix to produce a fiber-reinforced polymer (FRP). Consequently, the aim of this work was to study the compatibility effect of four coupling agents on ...[+]
Subjects: Poly(lactic acid) , Wool , Fiber reinforced polymer (FRP) , Green materials , Coupling agent , Silane , Alkoxide , Compatibilizers
Copyrigths: Reconocimiento (by)
Source:
Polymers. (eissn: 2073-4360 )
DOI: 10.3390/polym11091514
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/polym11091514
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/
Thanks:
This work has been supported by the Spanish Ministry of Economy and Competitiveness, PROMADEPCOL (MAT2017-84909-C2-2-R).
Type: Artículo

References

Kopacic, S., Walzl, A., Hirn, U., Zankel, A., Kniely, R., Leitner, E., & Bauer, W. (2018). Application of Industrially Produced Chitosan in the Surface Treatment of Fibre-Based Material: Effect of Drying Method and Number of Coating Layers on Mechanical and Barrier Properties. Polymers, 10(11), 1232. doi:10.3390/polym10111232

Arrieta, M. P., López, J., Ferrándiz, S., & Peltzer, M. A. (2013). Characterization of PLA-limonene blends for food packaging applications. Polymer Testing, 32(4), 760-768. doi:10.1016/j.polymertesting.2013.03.016

Aldas, M., Paladines, A., Valle, V., Pazmiño, M., & Quiroz, F. (2018). Effect of the Prodegradant-Additive Plastics Incorporated on the Polyethylene Recycling. International Journal of Polymer Science, 2018, 1-10. doi:10.1155/2018/2474176 [+]
Kopacic, S., Walzl, A., Hirn, U., Zankel, A., Kniely, R., Leitner, E., & Bauer, W. (2018). Application of Industrially Produced Chitosan in the Surface Treatment of Fibre-Based Material: Effect of Drying Method and Number of Coating Layers on Mechanical and Barrier Properties. Polymers, 10(11), 1232. doi:10.3390/polym10111232

Arrieta, M. P., López, J., Ferrándiz, S., & Peltzer, M. A. (2013). Characterization of PLA-limonene blends for food packaging applications. Polymer Testing, 32(4), 760-768. doi:10.1016/j.polymertesting.2013.03.016

Aldas, M., Paladines, A., Valle, V., Pazmiño, M., & Quiroz, F. (2018). Effect of the Prodegradant-Additive Plastics Incorporated on the Polyethylene Recycling. International Journal of Polymer Science, 2018, 1-10. doi:10.1155/2018/2474176

Shukor, F., Hassan, A., Saiful Islam, M., Mokhtar, M., & Hasan, M. (2014). Effect of ammonium polyphosphate on flame retardancy, thermal stability and mechanical properties of alkali treated kenaf fiber filled PLA biocomposites. Materials & Design (1980-2015), 54, 425-429. doi:10.1016/j.matdes.2013.07.095

Arrieta, M. P., Fortunati, E., Dominici, F., López, J., & Kenny, J. M. (2015). Bionanocomposite films based on plasticized PLA–PHB/cellulose nanocrystal blends. Carbohydrate Polymers, 121, 265-275. doi:10.1016/j.carbpol.2014.12.056

Samper, M. D., Petrucci, R., Sánchez-Nacher, L., Balart, R., & Kenny, J. M. (2015). New environmentally friendly composite laminates with epoxidized linseed oil (ELO) and slate fiber fabrics. Composites Part B: Engineering, 71, 203-209. doi:10.1016/j.compositesb.2014.11.034

Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082

Samper, M. D., Fombuena, V., Boronat, T., García-Sanoguera, D., & Balart, R. (2012). Thermal and Mechanical Characterization of Epoxy Resins (ELO and ESO) Cured with Anhydrides. Journal of the American Oil Chemists’ Society. doi:10.1007/s11746-012-2041-y

Arrieta, M., Samper, M., Aldas, M., & López, J. (2017). On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications. Materials, 10(9), 1008. doi:10.3390/ma10091008

Grząbka-Zasadzińska, A., Klapiszewski, Ł., Borysiak, S., & Jesionowski, T. (2018). Thermal and Mechanical Properties of Silica–Lignin/Polylactide Composites Subjected to Biodegradation. Materials, 11(11), 2257. doi:10.3390/ma11112257

Nasrin, R., Biswas, S., Rashid, T. U., Afrin, S., Jahan, R. A., Haque, P., & Rahman, M. M. (2017). Preparation of Chitin-PLA laminated composite for implantable application. Bioactive Materials, 2(4), 199-207. doi:10.1016/j.bioactmat.2017.09.003

Wang, L., Okada, K., Hikima, Y., Ohshima, M., Sekiguchi, T., & Yano, H. (2019). Effect of Cellulose Nanofiber (CNF) Surface Treatment on Cellular Structures and Mechanical Properties of Polypropylene/CNF Nanocomposite Foams via Core-Back Foam Injection Molding. Polymers, 11(2), 249. doi:10.3390/polym11020249

Klapiszewski, Ł., Pawlak, F., Tomaszewska, J., & Jesionowski, T. (2015). Preparation and Characterization of Novel PVC/Silica–Lignin Composites. Polymers, 7(9), 1767-1788. doi:10.3390/polym7091482

Sormunen, P., & Kärki, T. (2019). Compression Molded Thermoplastic Composites Entirely Made of Recycled Materials. Sustainability, 11(3), 631. doi:10.3390/su11030631

Herrera, N., Roch, H., Salaberria, A. M., Pino-Orellana, M. A., Labidi, J., Fernandes, S. C. M., … Oksman, K. (2016). Functionalized blown films of plasticized polylactic acid/chitin nanocomposite: Preparation and characterization. Materials & Design, 92, 846-852. doi:10.1016/j.matdes.2015.12.083

Samper, M. D., Petrucci, R., Sanchez-Nacher, L., Balart, R., & Kenny, J. M. (2015). Properties of composite laminates based on basalt fibers with epoxidized vegetable oils. Materials & Design, 72, 9-15. doi:10.1016/j.matdes.2015.02.002

Wang, F., Zhou, S., Yang, M., Chen, Z., & Ran, S. (2018). Thermo-Mechanical Performance of Polylactide Composites Reinforced with Alkali-Treated Bamboo Fibers. Polymers, 10(4), 401. doi:10.3390/polym10040401

Ferri, J. M., Garcia-Garcia, D., Montanes, N., Fenollar, O., & Balart, R. (2017). The effect of maleinized linseed oil as biobased plasticizer in poly(lactic acid)-based formulations. Polymer International, 66(6), 882-891. doi:10.1002/pi.5329

Alam, J., Alam, M., Raja, M., Abduljaleel, Z., & Dass, L. (2014). MWCNTs-Reinforced Epoxidized Linseed Oil Plasticized Polylactic Acid Nanocomposite and Its Electroactive Shape Memory Behaviour. International Journal of Molecular Sciences, 15(11), 19924-19937. doi:10.3390/ijms151119924

Chang, C.-W., Lee, H.-L., & Lu, K.-T. (2018). Manufacture and Characteristics of Oil-Modified Refined Lacquer for Wood Coatings. Coatings, 9(1), 11. doi:10.3390/coatings9010011

Liminana, P., Quiles-Carrillo, L., Boronat, T., Balart, R., & Montanes, N. (2018). The Effect of Varying Almond Shell Flour (ASF) Loading in Composites with Poly(Butylene Succinate (PBS) Matrix Compatibilized with Maleinized Linseed Oil (MLO). Materials, 11(11), 2179. doi:10.3390/ma11112179

Arrieta, M. P., Samper, M. D., Jiménez-López, M., Aldas, M., & López, J. (2017). Combined effect of linseed oil and gum rosin as natural additives for PVC. Industrial Crops and Products, 99, 196-204. doi:10.1016/j.indcrop.2017.02.009

Hearle, J. W. . (2000). A critical review of the structural mechanics of wool and hair fibres. International Journal of Biological Macromolecules, 27(2), 123-138. doi:10.1016/s0141-8130(00)00116-1

Xu, W., Ke, G., Wu, J., & Wang, X. (2006). Modification of wool fiber using steam explosion. European Polymer Journal, 42(9), 2168-2173. doi:10.1016/j.eurpolymj.2006.03.026

Xu, B., Niu, M., Wei, L., Hou, W., & Liu, X. (2007). The structural analysis of biomacromolecule wool fiber with Ag-loading SiO2 nano-antibacterial agent by UV radiation. Journal of Photochemistry and Photobiology A: Chemistry, 188(1), 98-105. doi:10.1016/j.jphotochem.2006.11.025

Wang, L., Yao, J., Niu, J., Liu, J., Li, B., & Feng, M. (2018). Eco-Friendly and Highly Efficient Enzyme-Based Wool Shrinkproofing Finishing by Multiple Padding Techniques. Polymers, 10(11), 1213. doi:10.3390/polym10111213

Quartinello, F., Vecchiato, S., Weinberger, S., Kremenser, K., Skopek, L., Pellis, A., & Guebitz, G. (2018). Highly Selective Enzymatic Recovery of Building Blocks from Wool-Cotton-Polyester Textile Waste Blends. Polymers, 10(10), 1107. doi:10.3390/polym10101107

Mu, F., Rong, E., Jing, Y., Yang, H., Ma, G., Yan, X., … Wang, N. (2017). Structural Characterization and Association of Ovine Dickkopf-1 Gene with Wool Production and Quality Traits in Chinese Merino. Genes, 8(12), 400. doi:10.3390/genes8120400

España, J. M., Samper, M. D., Fages, E., Sánchez-Nácher, L., & Balart, R. (2013). Investigation of the effect of different silane coupling agents on mechanical performance of basalt fiber composite laminates with biobased epoxy matrices. Polymer Composites, 34(3), 376-381. doi:10.1002/pc.22421

Samper, M. D., Petrucci, R., Sánchez-Nacher, L., Balart, R., & Kenny, J. M. (2014). Effect of silane coupling agents on basalt fiber-epoxidized vegetable oil matrix composite materials analyzed by the single fiber fragmentation technique. Polymer Composites, 36(7), 1205-1212. doi:10.1002/pc.23023

Kabir, M. M., Wang, H., Lau, K. T., & Cardona, F. (2012). Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering, 43(7), 2883-2892. doi:10.1016/j.compositesb.2012.04.053

Naeimirad, M., Zadhoush, A., Esmaeely Neisiany, R., Salimian, S., & Kotek, R. (2018). Melt-spun PLA liquid-filled fibers: physical, morphological, and thermal properties. The Journal of The Textile Institute, 110(1), 89-99. doi:10.1080/00405000.2018.1465336

Abdelmouleh, M., Boufi, S., ben Salah, A., Belgacem, M. N., & Gandini, A. (2002). Interaction of Silane Coupling Agents with Cellulose. Langmuir, 18(8), 3203-3208. doi:10.1021/la011657g

Aldas, M., Ferri, J. M., Lopez‐Martinez, J., Samper, M. D., & Arrieta, M. P. (2019). Effect of pine resin derivatives on the structural, thermal, and mechanical properties of Mater‐Bi type bioplastic. Journal of Applied Polymer Science, 137(4), 48236. doi:10.1002/app.48236

Conzatti, L., Giunco, F., Stagnaro, P., Patrucco, A., Tonin, C., Marano, C., … Marsano, E. (2014). Wool fibres functionalised with a silane-based coupling agent for reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 61, 51-59. doi:10.1016/j.compositesa.2014.02.005

Kuciel, S., & Romańska, P. (2018). Hybrid Composites of Polylactide with Basalt and Carbon Fibers and Their Thermal Treatment. Materials, 12(1), 95. doi:10.3390/ma12010095

Magoń, A., & Pyda, M. (2009). Study of crystalline and amorphous phases of biodegradable poly(lactic acid) by advanced thermal analysis. Polymer, 50(16), 3967-3973. doi:10.1016/j.polymer.2009.06.052

Jiang, J., Jiang, C., Li, B., & Feng, P. (2019). Bond behavior of basalt textile meshes in ultra-high ductility cementitious composites. Composites Part B: Engineering, 174, 107022. doi:10.1016/j.compositesb.2019.107022

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record