- -

Efect of Different Compatibilizers on Injection-Molded Green Fiber-Reinforced Polymers Based on Poly(lactic acid)-Maleinized Linseed Oil System and Sheep Wool

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Efect of Different Compatibilizers on Injection-Molded Green Fiber-Reinforced Polymers Based on Poly(lactic acid)-Maleinized Linseed Oil System and Sheep Wool

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pawlak, Franciszek es_ES
dc.contributor.author Aldas-Carrasco, Miguel Fernando es_ES
dc.contributor.author López-Martínez, Juan es_ES
dc.contributor.author Samper, María-Dolores es_ES
dc.date.accessioned 2021-01-30T04:31:13Z
dc.date.available 2021-01-30T04:31:13Z
dc.date.issued 2019-09 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160294
dc.description.abstract [EN] A method to modify polymers is that of introducing fibers in a matrix to produce a fiber-reinforced polymer (FRP). Consequently, the aim of this work was to study the compatibility effect of four coupling agents on wool FRP properties, using poly(lactic acid) plasticized with maleinized linseed oil as polymer matrix. The content of wool assessed was 1 phr. The compatibilizers were (3-(2-aminoethylamino)propyl)-trimethoxysilane, trimethoxy (2-(7-oxabicyclo (4.1.0)hept-3-yl) ethyl) silane, tris(2-methoxyethoxy)(vinyl) silane and titanium (IV) (triethanolaminate)isopropoxide. Initially, wool was modified with coupling agents in an acetone/water (50/50) solution. Mechanical properties were evaluated by tensile and flexural properties, hardness by Shore D measurement and impact resistance by Charpy's energy. Differential scanning calorimetry, dynamic thermo-mechanical analysis, and thermogravimetric analysis were conducted to evaluate the interaction among components and the effect of the coupling agents on the thermal properties of the original material. Color, wettability and scanning electron microscopy were used to describe physical and microstructural properties. Modification of fibers allows achieving improved mechanical properties and changes the thermal properties of the FRPs slightly. Coupling agent treatment helps to formulate PLA-MLO and sheep wool materials and to improve their performance, thereby creating a broader spectrum of applications for PLA maintaining the bio-based character of the material. es_ES
dc.description.sponsorship This work has been supported by the Spanish Ministry of Economy and Competitiveness, PROMADEPCOL (MAT2017-84909-C2-2-R). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Polymers es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Poly(lactic acid) es_ES
dc.subject Wool es_ES
dc.subject Fiber reinforced polymer (FRP) es_ES
dc.subject Green materials es_ES
dc.subject Coupling agent es_ES
dc.subject Silane es_ES
dc.subject Alkoxide es_ES
dc.subject Compatibilizers es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Efect of Different Compatibilizers on Injection-Molded Green Fiber-Reinforced Polymers Based on Poly(lactic acid)-Maleinized Linseed Oil System and Sheep Wool es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/polym11091514 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.description.bibliographicCitation Pawlak, F.; Aldas-Carrasco, MF.; López-Martínez, J.; Samper, M. (2019). Efect of Different Compatibilizers on Injection-Molded Green Fiber-Reinforced Polymers Based on Poly(lactic acid)-Maleinized Linseed Oil System and Sheep Wool. Polymers. 11(9):1-22. https://doi.org/10.3390/polym11091514 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/polym11091514 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 22 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 9 es_ES
dc.identifier.eissn 2073-4360 es_ES
dc.identifier.pmid 31533307 es_ES
dc.identifier.pmcid PMC6780267 es_ES
dc.relation.pasarela S\393311 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Kopacic, S., Walzl, A., Hirn, U., Zankel, A., Kniely, R., Leitner, E., & Bauer, W. (2018). Application of Industrially Produced Chitosan in the Surface Treatment of Fibre-Based Material: Effect of Drying Method and Number of Coating Layers on Mechanical and Barrier Properties. Polymers, 10(11), 1232. doi:10.3390/polym10111232 es_ES
dc.description.references Arrieta, M. P., López, J., Ferrándiz, S., & Peltzer, M. A. (2013). Characterization of PLA-limonene blends for food packaging applications. Polymer Testing, 32(4), 760-768. doi:10.1016/j.polymertesting.2013.03.016 es_ES
dc.description.references Aldas, M., Paladines, A., Valle, V., Pazmiño, M., & Quiroz, F. (2018). Effect of the Prodegradant-Additive Plastics Incorporated on the Polyethylene Recycling. International Journal of Polymer Science, 2018, 1-10. doi:10.1155/2018/2474176 es_ES
dc.description.references Shukor, F., Hassan, A., Saiful Islam, M., Mokhtar, M., & Hasan, M. (2014). Effect of ammonium polyphosphate on flame retardancy, thermal stability and mechanical properties of alkali treated kenaf fiber filled PLA biocomposites. Materials & Design (1980-2015), 54, 425-429. doi:10.1016/j.matdes.2013.07.095 es_ES
dc.description.references Arrieta, M. P., Fortunati, E., Dominici, F., López, J., & Kenny, J. M. (2015). Bionanocomposite films based on plasticized PLA–PHB/cellulose nanocrystal blends. Carbohydrate Polymers, 121, 265-275. doi:10.1016/j.carbpol.2014.12.056 es_ES
dc.description.references Samper, M. D., Petrucci, R., Sánchez-Nacher, L., Balart, R., & Kenny, J. M. (2015). New environmentally friendly composite laminates with epoxidized linseed oil (ELO) and slate fiber fabrics. Composites Part B: Engineering, 71, 203-209. doi:10.1016/j.compositesb.2014.11.034 es_ES
dc.description.references Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082 es_ES
dc.description.references Samper, M. D., Fombuena, V., Boronat, T., García-Sanoguera, D., & Balart, R. (2012). Thermal and Mechanical Characterization of Epoxy Resins (ELO and ESO) Cured with Anhydrides. Journal of the American Oil Chemists’ Society. doi:10.1007/s11746-012-2041-y es_ES
dc.description.references Arrieta, M., Samper, M., Aldas, M., & López, J. (2017). On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications. Materials, 10(9), 1008. doi:10.3390/ma10091008 es_ES
dc.description.references Grząbka-Zasadzińska, A., Klapiszewski, Ł., Borysiak, S., & Jesionowski, T. (2018). Thermal and Mechanical Properties of Silica–Lignin/Polylactide Composites Subjected to Biodegradation. Materials, 11(11), 2257. doi:10.3390/ma11112257 es_ES
dc.description.references Nasrin, R., Biswas, S., Rashid, T. U., Afrin, S., Jahan, R. A., Haque, P., & Rahman, M. M. (2017). Preparation of Chitin-PLA laminated composite for implantable application. Bioactive Materials, 2(4), 199-207. doi:10.1016/j.bioactmat.2017.09.003 es_ES
dc.description.references Wang, L., Okada, K., Hikima, Y., Ohshima, M., Sekiguchi, T., & Yano, H. (2019). Effect of Cellulose Nanofiber (CNF) Surface Treatment on Cellular Structures and Mechanical Properties of Polypropylene/CNF Nanocomposite Foams via Core-Back Foam Injection Molding. Polymers, 11(2), 249. doi:10.3390/polym11020249 es_ES
dc.description.references Klapiszewski, Ł., Pawlak, F., Tomaszewska, J., & Jesionowski, T. (2015). Preparation and Characterization of Novel PVC/Silica–Lignin Composites. Polymers, 7(9), 1767-1788. doi:10.3390/polym7091482 es_ES
dc.description.references Sormunen, P., & Kärki, T. (2019). Compression Molded Thermoplastic Composites Entirely Made of Recycled Materials. Sustainability, 11(3), 631. doi:10.3390/su11030631 es_ES
dc.description.references Herrera, N., Roch, H., Salaberria, A. M., Pino-Orellana, M. A., Labidi, J., Fernandes, S. C. M., … Oksman, K. (2016). Functionalized blown films of plasticized polylactic acid/chitin nanocomposite: Preparation and characterization. Materials & Design, 92, 846-852. doi:10.1016/j.matdes.2015.12.083 es_ES
dc.description.references Samper, M. D., Petrucci, R., Sanchez-Nacher, L., Balart, R., & Kenny, J. M. (2015). Properties of composite laminates based on basalt fibers with epoxidized vegetable oils. Materials & Design, 72, 9-15. doi:10.1016/j.matdes.2015.02.002 es_ES
dc.description.references Wang, F., Zhou, S., Yang, M., Chen, Z., & Ran, S. (2018). Thermo-Mechanical Performance of Polylactide Composites Reinforced with Alkali-Treated Bamboo Fibers. Polymers, 10(4), 401. doi:10.3390/polym10040401 es_ES
dc.description.references Ferri, J. M., Garcia-Garcia, D., Montanes, N., Fenollar, O., & Balart, R. (2017). The effect of maleinized linseed oil as biobased plasticizer in poly(lactic acid)-based formulations. Polymer International, 66(6), 882-891. doi:10.1002/pi.5329 es_ES
dc.description.references Alam, J., Alam, M., Raja, M., Abduljaleel, Z., & Dass, L. (2014). MWCNTs-Reinforced Epoxidized Linseed Oil Plasticized Polylactic Acid Nanocomposite and Its Electroactive Shape Memory Behaviour. International Journal of Molecular Sciences, 15(11), 19924-19937. doi:10.3390/ijms151119924 es_ES
dc.description.references Chang, C.-W., Lee, H.-L., & Lu, K.-T. (2018). Manufacture and Characteristics of Oil-Modified Refined Lacquer for Wood Coatings. Coatings, 9(1), 11. doi:10.3390/coatings9010011 es_ES
dc.description.references Liminana, P., Quiles-Carrillo, L., Boronat, T., Balart, R., & Montanes, N. (2018). The Effect of Varying Almond Shell Flour (ASF) Loading in Composites with Poly(Butylene Succinate (PBS) Matrix Compatibilized with Maleinized Linseed Oil (MLO). Materials, 11(11), 2179. doi:10.3390/ma11112179 es_ES
dc.description.references Arrieta, M. P., Samper, M. D., Jiménez-López, M., Aldas, M., & López, J. (2017). Combined effect of linseed oil and gum rosin as natural additives for PVC. Industrial Crops and Products, 99, 196-204. doi:10.1016/j.indcrop.2017.02.009 es_ES
dc.description.references Hearle, J. W. . (2000). A critical review of the structural mechanics of wool and hair fibres. International Journal of Biological Macromolecules, 27(2), 123-138. doi:10.1016/s0141-8130(00)00116-1 es_ES
dc.description.references Xu, W., Ke, G., Wu, J., & Wang, X. (2006). Modification of wool fiber using steam explosion. European Polymer Journal, 42(9), 2168-2173. doi:10.1016/j.eurpolymj.2006.03.026 es_ES
dc.description.references Xu, B., Niu, M., Wei, L., Hou, W., & Liu, X. (2007). The structural analysis of biomacromolecule wool fiber with Ag-loading SiO2 nano-antibacterial agent by UV radiation. Journal of Photochemistry and Photobiology A: Chemistry, 188(1), 98-105. doi:10.1016/j.jphotochem.2006.11.025 es_ES
dc.description.references Wang, L., Yao, J., Niu, J., Liu, J., Li, B., & Feng, M. (2018). Eco-Friendly and Highly Efficient Enzyme-Based Wool Shrinkproofing Finishing by Multiple Padding Techniques. Polymers, 10(11), 1213. doi:10.3390/polym10111213 es_ES
dc.description.references Quartinello, F., Vecchiato, S., Weinberger, S., Kremenser, K., Skopek, L., Pellis, A., & Guebitz, G. (2018). Highly Selective Enzymatic Recovery of Building Blocks from Wool-Cotton-Polyester Textile Waste Blends. Polymers, 10(10), 1107. doi:10.3390/polym10101107 es_ES
dc.description.references Mu, F., Rong, E., Jing, Y., Yang, H., Ma, G., Yan, X., … Wang, N. (2017). Structural Characterization and Association of Ovine Dickkopf-1 Gene with Wool Production and Quality Traits in Chinese Merino. Genes, 8(12), 400. doi:10.3390/genes8120400 es_ES
dc.description.references España, J. M., Samper, M. D., Fages, E., Sánchez-Nácher, L., & Balart, R. (2013). Investigation of the effect of different silane coupling agents on mechanical performance of basalt fiber composite laminates with biobased epoxy matrices. Polymer Composites, 34(3), 376-381. doi:10.1002/pc.22421 es_ES
dc.description.references Samper, M. D., Petrucci, R., Sánchez-Nacher, L., Balart, R., & Kenny, J. M. (2014). Effect of silane coupling agents on basalt fiber-epoxidized vegetable oil matrix composite materials analyzed by the single fiber fragmentation technique. Polymer Composites, 36(7), 1205-1212. doi:10.1002/pc.23023 es_ES
dc.description.references Kabir, M. M., Wang, H., Lau, K. T., & Cardona, F. (2012). Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering, 43(7), 2883-2892. doi:10.1016/j.compositesb.2012.04.053 es_ES
dc.description.references Naeimirad, M., Zadhoush, A., Esmaeely Neisiany, R., Salimian, S., & Kotek, R. (2018). Melt-spun PLA liquid-filled fibers: physical, morphological, and thermal properties. The Journal of The Textile Institute, 110(1), 89-99. doi:10.1080/00405000.2018.1465336 es_ES
dc.description.references Abdelmouleh, M., Boufi, S., ben Salah, A., Belgacem, M. N., & Gandini, A. (2002). Interaction of Silane Coupling Agents with Cellulose. Langmuir, 18(8), 3203-3208. doi:10.1021/la011657g es_ES
dc.description.references Aldas, M., Ferri, J. M., Lopez‐Martinez, J., Samper, M. D., & Arrieta, M. P. (2019). Effect of pine resin derivatives on the structural, thermal, and mechanical properties of Mater‐Bi type bioplastic. Journal of Applied Polymer Science, 137(4), 48236. doi:10.1002/app.48236 es_ES
dc.description.references Conzatti, L., Giunco, F., Stagnaro, P., Patrucco, A., Tonin, C., Marano, C., … Marsano, E. (2014). Wool fibres functionalised with a silane-based coupling agent for reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 61, 51-59. doi:10.1016/j.compositesa.2014.02.005 es_ES
dc.description.references Kuciel, S., & Romańska, P. (2018). Hybrid Composites of Polylactide with Basalt and Carbon Fibers and Their Thermal Treatment. Materials, 12(1), 95. doi:10.3390/ma12010095 es_ES
dc.description.references Magoń, A., & Pyda, M. (2009). Study of crystalline and amorphous phases of biodegradable poly(lactic acid) by advanced thermal analysis. Polymer, 50(16), 3967-3973. doi:10.1016/j.polymer.2009.06.052 es_ES
dc.description.references Jiang, J., Jiang, C., Li, B., & Feng, P. (2019). Bond behavior of basalt textile meshes in ultra-high ductility cementitious composites. Composites Part B: Engineering, 174, 107022. doi:10.1016/j.compositesb.2019.107022 es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem