- -

Effect of Chitin Whiskers on the Molecular Dynamics of Carrageenan-Based Nanocomposites

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of Chitin Whiskers on the Molecular Dynamics of Carrageenan-Based Nanocomposites

Mostrar el registro completo del ítem

Carsí Rosique, M.; Sanchis Sánchez, MJ.; Gómez, CM.; Rodriguez, S.; García-Torres, F. (2019). Effect of Chitin Whiskers on the Molecular Dynamics of Carrageenan-Based Nanocomposites. Polymers. 11(6):1-16. https://doi.org/10.3390/polym11061083

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160299

Ficheros en el ítem

Metadatos del ítem

Título: Effect of Chitin Whiskers on the Molecular Dynamics of Carrageenan-Based Nanocomposites
Autor: Carsí Rosique, Marta Sanchis Sánchez, María Jesús Gómez, Clara M. Rodriguez, Sol García-Torres, Fernando
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
[EN] Films of carrageenan (KC) and glycerol (g) with different contents of chitin nanowhiskers (CHW) were prepared by a solution casting process. The molecular dynamics of pure carrageenan (KC), carrageenan/glycerol (KCg) ...[+]
Palabras clave: Carrageenan , Chitin , Dielectric relaxation spectroscopy , Electric modulus , Fragility
Derechos de uso: Reconocimiento (by)
Fuente:
Polymers. (eissn: 2073-4360 )
DOI: 10.3390/polym11061083
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/polym11061083
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MAT2015-63955-R/ES/NANOESTRUCTURAS SEMICONDUCTORAS Y NANOCOMPOSITES PARA LA RECUPERACION ENERGETICA/
Agradecimientos:
This research was funded by the DGCYT grant number [MAT2015-63955-R] and the Vice-Rectorate for Research of the Pontificia Universidad Catolica del Peru and the the Peruvian Science and Technology Program (INNOVATE-PERU) ...[+]
Tipo: Artículo

References

Zheng, Y., Monty, J., & Linhardt, R. J. (2015). Polysaccharide-based nanocomposites and their applications. Carbohydrate Research, 405, 23-32. doi:10.1016/j.carres.2014.07.016

Jamróz, E., Kulawik, P., & Kopel, P. (2019). The Effect of Nanofillers on the Functional Properties of Biopolymer-Based Films: A Review. Polymers, 11(4), 675. doi:10.3390/polym11040675

Park, S.-B., Lih, E., Park, K.-S., Joung, Y. K., & Han, D. K. (2017). Biopolymer-based functional composites for medical applications. Progress in Polymer Science, 68, 77-105. doi:10.1016/j.progpolymsci.2016.12.003 [+]
Zheng, Y., Monty, J., & Linhardt, R. J. (2015). Polysaccharide-based nanocomposites and their applications. Carbohydrate Research, 405, 23-32. doi:10.1016/j.carres.2014.07.016

Jamróz, E., Kulawik, P., & Kopel, P. (2019). The Effect of Nanofillers on the Functional Properties of Biopolymer-Based Films: A Review. Polymers, 11(4), 675. doi:10.3390/polym11040675

Park, S.-B., Lih, E., Park, K.-S., Joung, Y. K., & Han, D. K. (2017). Biopolymer-based functional composites for medical applications. Progress in Polymer Science, 68, 77-105. doi:10.1016/j.progpolymsci.2016.12.003

Xie, F., Pollet, E., Halley, P. J., & Avérous, L. (2013). Starch-based nano-biocomposites. Progress in Polymer Science, 38(10-11), 1590-1628. doi:10.1016/j.progpolymsci.2013.05.002

Zhang, R., Wang, X., Wang, J., & Cheng, M. (2018). Synthesis and Characterization of Konjac Glucomannan/Carrageenan/Nano-silica Films for the Preservation of Postharvest White Mushrooms. Polymers, 11(1), 6. doi:10.3390/polym11010006

Rhim, J.-W., Park, H.-M., & Ha, C.-S. (2013). Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38(10-11), 1629-1652. doi:10.1016/j.progpolymsci.2013.05.008

Müller, K., Bugnicourt, E., Latorre, M., Jorda, M., Echegoyen Sanz, Y., Lagaron, J., … Schmid, M. (2017). Review on the Processing and Properties of Polymer Nanocomposites and Nanocoatings and Their Applications in the Packaging, Automotive and Solar Energy Fields. Nanomaterials, 7(4), 74. doi:10.3390/nano7040074

Shankar, S., Reddy, J. P., Rhim, J.-W., & Kim, H.-Y. (2015). Preparation, characterization, and antimicrobial activity of chitin nanofibrils reinforced carrageenan nanocomposite films. Carbohydrate Polymers, 117, 468-475. doi:10.1016/j.carbpol.2014.10.010

Corvaglia, S., Rodriguez, S., Bardi, G., Torres, F. G., & Lopez, D. (2016). Chitin whiskers reinforced carrageenan films as low adhesion cell substrates. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(11), 574-580. doi:10.1080/00914037.2016.1149846

Shojaee-Aliabadi, S., Mohammadifar, M. A., Hosseini, H., Mohammadi, A., Ghasemlou, M., Hosseini, S. M., … Khaksar, R. (2014). Characterization of nanobiocomposite kappa-carrageenan film with Zataria multiflora essential oil and nanoclay. International Journal of Biological Macromolecules, 69, 282-289. doi:10.1016/j.ijbiomac.2014.05.015

Reddy, M. M., Vivekanandhan, S., Misra, M., Bhatia, S. K., & Mohanty, A. K. (2013). Biobased plastics and bionanocomposites: Current status and future opportunities. Progress in Polymer Science, 38(10-11), 1653-1689. doi:10.1016/j.progpolymsci.2013.05.006

Wang, P., Zhao, X., Lv, Y., Li, M., Liu, X., Li, G., & Yu, G. (2012). Structural and compositional characteristics of hybrid carrageenans from red algae Chondracanthus chamissoi. Carbohydrate Polymers, 89(3), 914-919. doi:10.1016/j.carbpol.2012.04.034

Byankina (Barabanova), A. O., Sokolova, E. V., Anastyuk, S. D., Isakov, V. V., Glazunov, V. P., Volod’ko, A. V., … Yermak, I. M. (2013). Polysaccharide structure of tetrasporic red seaweed Tichocarpus crinitus. Carbohydrate Polymers, 98(1), 26-35. doi:10.1016/j.carbpol.2013.04.063

Stortz, C. A., & Cerezo, A. S. (1992). The 13C NMR spectroscopy of carrageenans: calculation of chemical shifts and computer-aided structural determination. Carbohydrate Polymers, 18(4), 237-242. doi:10.1016/0144-8617(92)90088-8

Rodriguez, S. A., Weese, E., Nakamatsu, J., & Torres, F. (2016). Development of Biopolymer Nanocomposites Based on Polysaccharides Obtained from Red AlgaeChondracanthus chamissoiReinforced with Chitin Whiskers and Montmorillonite. Polymer-Plastics Technology and Engineering, 55(15), 1557-1564. doi:10.1080/03602559.2016.1163583

Mitsuiki, M., Yamamoto, Y., Mizuno, A., & Motoki, M. (1998). Glass Transition Properties as a Function of Water Content for Various Low-Moisture Galactans. Journal of Agricultural and Food Chemistry, 46(9), 3528-3534. doi:10.1021/jf9709820

Picker, K. M. (1999). The use of carrageenan in mixture with microcrystalline cellulose and its functionality for making tablets. European Journal of Pharmaceutics and Biopharmaceutics, 48(1), 27-36. doi:10.1016/s0939-6411(99)00009-0

Kasapis, S., & Mitchell, J. R. (2001). Definition of the rheological glass transition temperature in association with the concept of iso-free-volume. International Journal of Biological Macromolecules, 29(4-5), 315-321. doi:10.1016/s0141-8130(01)00180-5

Fouda, M. M. G., El-Aassar, M. R., El Fawal, G. F., Hafez, E. E., Masry, S. H. D., & Abdel-Megeed, A. (2015). k-Carrageenan/poly vinyl pyrollidone/polyethylene glycol/silver nanoparticles film for biomedical application. International Journal of Biological Macromolecules, 74, 179-184. doi:10.1016/j.ijbiomac.2014.11.040

Arof, A. K., Shuhaimi, N. E. A., Alias, N. A., Kufian, M. Z., & Majid, S. R. (2010). Application of chitosan/iota-carrageenan polymer electrolytes in electrical double layer capacitor (EDLC). Journal of Solid State Electrochemistry, 14(12), 2145-2152. doi:10.1007/s10008-010-1050-8

Rescignano, N., Fortunati, E., Armentano, I., Hernandez, R., Mijangos, C., Pasquino, R., & Kenny, J. M. (2015). Use of alginate, chitosan and cellulose nanocrystals as emulsion stabilizers in the synthesis of biodegradable polymeric nanoparticles. Journal of Colloid and Interface Science, 445, 31-39. doi:10.1016/j.jcis.2014.12.032

Chang, P. R., Jian, R., Yu, J., & Ma, X. (2010). Starch-based composites reinforced with novel chitin nanoparticles. Carbohydrate Polymers, 80(2), 420-425. doi:10.1016/j.carbpol.2009.11.041

Zeng, J.-B., He, Y.-S., Li, S.-L., & Wang, Y.-Z. (2011). Chitin Whiskers: An Overview. Biomacromolecules, 13(1), 1-11. doi:10.1021/bm201564a

Villanueva, M. E., Salinas, A., Díaz, L. E., & Copello, G. J. (2015). Chitin nanowhiskers as alternative antimicrobial controlled release carriers. New Journal of Chemistry, 39(1), 614-620. doi:10.1039/c4nj01522c

Kameda, T., Miyazawa, M., Ono, H., & Yoshida, M. (2005). Hydrogen Bonding Structure and Stability of?-Chitin Studied by13C Solid-State NMR. Macromolecular Bioscience, 5(2), 103-106. doi:10.1002/mabi.200400142

MARCHESSAULT, R. H., MOREHEAD, F. F., & WALTER, N. M. (1959). Liquid Crystal Systems from Fibrillar Polysaccharides. Nature, 184(4686), 632-633. doi:10.1038/184632a0

Paillet, M., & Dufresne, A. (2001). Chitin Whisker Reinforced Thermoplastic Nanocomposites. Macromolecules, 34(19), 6527-6530. doi:10.1021/ma002049v

Gopalan Nair, K., & Dufresne, A. (2003). Crab Shell Chitin Whisker Reinforced Natural Rubber Nanocomposites. 1. Processing and Swelling Behavior. Biomacromolecules, 4(3), 657-665. doi:10.1021/bm020127b

Huang, Y., Yao, M., Zheng, X., Liang, X., Su, X., Zhang, Y., … Zhang, L. (2015). Effects of Chitin Whiskers on Physical Properties and Osteoblast Culture of Alginate Based Nanocomposite Hydrogels. Biomacromolecules, 16(11), 3499-3507. doi:10.1021/acs.biomac.5b00928

Morin, A., & Dufresne, A. (2002). Nanocomposites of Chitin Whiskers from Riftia Tubes and Poly(caprolactone). Macromolecules, 35(6), 2190-2199. doi:10.1021/ma011493a

Watthanaphanit, A., Supaphol, P., Tamura, H., Tokura, S., & Rujiravanit, R. (2008). Fabrication, structure, and properties of chitin whisker-reinforced alginate nanocomposite fibers. Journal of Applied Polymer Science, 110(2), 890-899. doi:10.1002/app.28634

Salaberria, A. M., Diaz, R. H., Labidi, J., & Fernandes, S. C. M. (2015). Preparing valuable renewable nanocomposite films based exclusively on oceanic biomass – Chitin nanofillers and chitosan. Reactive and Functional Polymers, 89, 31-39. doi:10.1016/j.reactfunctpolym.2015.03.003

Rodríguez, S., Gatto, F., Pesce, L., Canale, C., Pompa, P. P., Bardi, G., … Torres, F. G. (2017). Monitoring cell substrate interactions in exopolysaccharide-based films reinforced with chitin whiskers and starch nanoparticles used as cell substrates. International Journal of Polymeric Materials and Polymeric Biomaterials, 67(6), 333-339. doi:10.1080/00914037.2017.1297942

Pazmiño Betancourt, B. A., Douglas, J. F., & Starr, F. W. (2013). Fragility and cooperative motion in a glass-forming polymer–nanoparticle composite. Soft Matter, 9(1), 241-254. doi:10.1039/c2sm26800k

Sanchis, M. J., Carsí, M., Culebras, M., Gómez, C. M., Rodriguez, S., & Torres, F. G. (2017). Molecular dynamics of carrageenan composites reinforced with Cloisite Na+ montmorillonite nanoclay. Carbohydrate Polymers, 176, 117-126. doi:10.1016/j.carbpol.2017.08.012

Wu, J., Zhang, K., Girouard, N., & Meredith, J. C. (2014). Facile Route to Produce Chitin Nanofibers as Precursors for Flexible and Transparent Gas Barrier Materials. Biomacromolecules, 15(12), 4614-4620. doi:10.1021/bm501416q

Sauti, G., & McLachlan, D. S. (2007). Impedance and modulus spectra of the percolation system silicon–polyester resin and their analysis using the two exponent phenomenological percolation equation. Journal of Materials Science, 42(16), 6477-6488. doi:10.1007/s10853-007-1564-3

Johari, G. P., Kim, S., & Shanker, R. M. (2007). Dielectric Relaxation and Crystallization of Ultraviscous Melt and Glassy States of Aspirin, Ibuprofen, Progesterone, and Quinidine. Journal of Pharmaceutical Sciences, 96(5), 1159-1175. doi:10.1002/jps.20921

Anastasiadis, S. H., Karatasos, K., Vlachos, G., Manias, E., & Giannelis, E. P. (2000). Nanoscopic-Confinement Effects on Local Dynamics. Physical Review Letters, 84(5), 915-918. doi:10.1103/physrevlett.84.915

Böhning, M., Goering, H., Fritz, A., Brzezinka, K.-W., Turky, G., Schönhals, A., & Schartel, B. (2005). Dielectric Study of Molecular Mobility in Poly(propylene-graft-maleic anhydride)/Clay Nanocomposites. Macromolecules, 38(7), 2764-2774. doi:10.1021/ma048315c

Hodge, I. M., Ngai, K. L., & Moynihan, C. T. (2005). Comments on the electric modulus function. Journal of Non-Crystalline Solids, 351(2), 104-115. doi:10.1016/j.jnoncrysol.2004.07.089

Havriliak, S., & Negami, S. (2007). A complex plane analysis of α-dispersions in some polymer systems. Journal of Polymer Science Part C: Polymer Symposia, 14(1), 99-117. doi:10.1002/polc.5070140111

TSANGARIS, G. M., PSARRAS, G. C., & TSANGARIS, G. M. (1998). Electric modulus and interfacial polarization in composite polymeric systems. Journal of Materials Science, 33(8), 2027-2037. doi:10.1023/a:1004398514901

Fulcher, G. S. (1925). ANALYSIS OF RECENT MEASUREMENTS OF THE VISCOSITY OF GLASSES. Journal of the American Ceramic Society, 8(6), 339-355. doi:10.1111/j.1151-2916.1925.tb16731.x

Tammann, G., & Hesse, W. (1926). Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Zeitschrift für anorganische und allgemeine Chemie, 156(1), 245-257. doi:10.1002/zaac.19261560121

Fragiadakis, D., Pissis, P., & Bokobza, L. (2005). Glass transition and molecular dynamics in poly(dimethylsiloxane)/silica nanocomposites. Polymer, 46(16), 6001-6008. doi:10.1016/j.polymer.2005.05.080

Rittigstein, P., & Torkelson, J. M. (2006). Polymer-nanoparticle interfacial interactions in polymer nanocomposites: Confinement effects on glass transition temperature and suppression of physical aging. Journal of Polymer Science Part B: Polymer Physics, 44(20), 2935-2943. doi:10.1002/polb.20925

Oh, H., & Green, P. F. (2009). Polymer chain dynamics and glass transition in athermal polymer/nanoparticle mixtures. Nature Materials, 8(2), 139-143. doi:10.1038/nmat2354

Riggleman, R. A., Yoshimoto, K., Douglas, J. F., & de Pablo, J. J. (2006). Influence of Confinement on the Fragility of Antiplasticized and Pure Polymer Films. Physical Review Letters, 97(4). doi:10.1103/physrevlett.97.045502

Doolittle, A. K. (1951). Studies in Newtonian Flow. II. The Dependence of the Viscosity of Liquids on Free‐Space. Journal of Applied Physics, 22(12), 1471-1475. doi:10.1063/1.1699894

Doolittle, A. K. (1952). Studies in Newtonian Flow. III. The Dependence of the Viscosity of Liquids on Molecular Weight and Free Space (in Homologous Series). Journal of Applied Physics, 23(2), 236-239. doi:10.1063/1.1702182

Plazek, D. J., & Ngai, K. L. (1991). Correlation of polymer segmental chain dynamics with temperature-dependent time-scale shifts. Macromolecules, 24(5), 1222-1224. doi:10.1021/ma00005a044

Merino, E. G., Atlas, S., Raihane, M., Belfkira, A., Lahcini, M., Hult, A., … Correia, N. T. (2011). Molecular dynamics of poly(ATRIF) homopolymer and poly(AN-co-ATRIF) copolymer investigated by dielectric relaxation spectroscopy. European Polymer Journal, 47(7), 1429-1446. doi:10.1016/j.eurpolymj.2011.04.006

Böhmer, R., Ngai, K. L., Angell, C. A., & Plazek, D. J. (1993). Nonexponential relaxations in strong and fragile glass formers. The Journal of Chemical Physics, 99(5), 4201-4209. doi:10.1063/1.466117

Roland, C. M., & Ngai, K. L. (1991). Segmental relaxation and molecular structure in polybutadienes and polyisoprene. Macromolecules, 24(19), 5315-5319. doi:10.1021/ma00019a016

Roland, C. M., & Ngai, K. L. (1992). Segmental relaxation and molecular structure in polybutadienes and polyisoprene. [Erratum to document cited in CA115(14):137101w]. Macromolecules, 25(6), 1844-1844. doi:10.1021/ma00032a038

Ngai, K. L., & Roland, C. M. (1993). Chemical structure and intermolecular cooperativity: dielectric relaxation results. Macromolecules, 26(25), 6824-6830. doi:10.1021/ma00077a019

Roland, C. M. (1992). Terminal and segmental relaxations in epoxidized polyisoprene. Macromolecules, 25(25), 7031-7036. doi:10.1021/ma00051a047

Angell, C. A., Poole, P. H., & Shao, J. (1994). Glass-forming liquids, anomalous liquids, and polyamorphism in liquids and biopolymers. Il Nuovo Cimento D, 16(8), 993-1025. doi:10.1007/bf02458784

Roland, C. M., & Ngai, K. L. (1996). The anomalous Debye–Waller factor and the fragility of glasses. The Journal of Chemical Physics, 104(8), 2967-2970. doi:10.1063/1.471117

Hodge, I. M. (1987). Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 6. Adam-Gibbs formulation of nonlinearity. Macromolecules, 20(11), 2897-2908. doi:10.1021/ma00177a044

Hodge, I. M. (1996). Strong and fragile liquids — a brief critique. Journal of Non-Crystalline Solids, 202(1-2), 164-172. doi:10.1016/0022-3093(96)00151-2

Roland, C. M., & Ngai, K. L. (1997). Commentary on ‘Strong and fragile liquids - A brief critique’. Journal of Non-Crystalline Solids, 212(1), 74-76. doi:10.1016/s0022-3093(96)00684-9

Angell, C. A. (1997). Why C1 = 16–17 in the WLF equation is physical—and the fragility of polymers. Polymer, 38(26), 6261-6266. doi:10.1016/s0032-3861(97)00201-2

Angell, C. A. (1995). Formation of Glasses from Liquids and Biopolymers. Science, 267(5206), 1924-1935. doi:10.1126/science.267.5206.1924

Angell, C. . (1991). Relaxation in liquids, polymers and plastic crystals — strong/fragile patterns and problems. Journal of Non-Crystalline Solids, 131-133, 13-31. doi:10.1016/0022-3093(91)90266-9

Kunal, K., Robertson, C. G., Pawlus, S., Hahn, S. F., & Sokolov, A. P. (2008). Role of Chemical Structure in Fragility of Polymers: A Qualitative Picture. Macromolecules, 41(19), 7232-7238. doi:10.1021/ma801155c

Sokolov, A. P., Novikov, V. N., & Ding, Y. (2007). Why many polymers are so fragile. Journal of Physics: Condensed Matter, 19(20), 205116. doi:10.1088/0953-8984/19/20/205116

Sanchis, M. J., Domínguez-Espinosa, G., Díaz-Calleja, R., Guzmán, J., & Riande, E. (2008). Influence of structural chemical characteristics on polymer chain dynamics. The Journal of Chemical Physics, 129(5), 054903. doi:10.1063/1.2956493

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem