- -

Experimental validation of a one-dimensional twin-entry radial turbine model under non-linear pulse conditions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Experimental validation of a one-dimensional twin-entry radial turbine model under non-linear pulse conditions

Mostrar el registro completo del ítem

Serrano, J.; Arnau Martínez, FJ.; García-Cuevas González, LM.; Soler-Blanco, P.; Cheung, R. (2021). Experimental validation of a one-dimensional twin-entry radial turbine model under non-linear pulse conditions. International Journal of Engine Research. 22(2):390-406. https://doi.org/10.1177/1468087419869157

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160604

Ficheros en el ítem

Metadatos del ítem

Título: Experimental validation of a one-dimensional twin-entry radial turbine model under non-linear pulse conditions
Autor: Serrano, J.R. Arnau Martínez, Francisco José García-Cuevas González, Luis Miguel Soler-Blanco, Pablo Cheung, Raymond
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] This article presents the experimental validation of a complete integrated one-dimensional twin-scroll turbine model able to be used in reciprocating internal combustion engine unsteady simulations. A passenger car ...[+]
Palabras clave: Turbocharger , One-dimensional model , Twin turbine , Pulsating flow , Instantaneous turbine performance
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
International Journal of Engine Research. (issn: 1468-0874 )
DOI: 10.1177/1468087419869157
Editorial:
SAGE Publications
Versión del editor: https://doi.org/10.1177/1468087419869157
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//FPI-2017-S2-1428/
info:eu-repo/grantAgreement/UPV//PAID-06-18/
info:eu-repo/grantAgreement/UPV//SP20180314/
Descripción: This is the author¿s version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087419869157
Agradecimientos:
The author(s) disclosed receipt of the following financial support for the research, authorship and/or publication of this article: This work was supported by the 'Ayuda a Primeros Proyectos de Investigacion' (PAID-06-18), ...[+]
Tipo: Artículo

References

Watson, N., & Janota, M. S. (1982). Turbocharging the Internal Combustion Engine. doi:10.1007/978-1-349-04024-7

Galindo, J., Fajardo, P., Navarro, R., & García-Cuevas, L. M. (2013). Characterization of a radial turbocharger turbine in pulsating flow by means of CFD and its application to engine modeling. Applied Energy, 103, 116-127. doi:10.1016/j.apenergy.2012.09.013

Torregrosa, A. J., Broatch, A., Navarro, R., & García-Tíscar, J. (2014). Acoustic characterization of automotive turbocompressors. International Journal of Engine Research, 16(1), 31-37. doi:10.1177/1468087414562866 [+]
Watson, N., & Janota, M. S. (1982). Turbocharging the Internal Combustion Engine. doi:10.1007/978-1-349-04024-7

Galindo, J., Fajardo, P., Navarro, R., & García-Cuevas, L. M. (2013). Characterization of a radial turbocharger turbine in pulsating flow by means of CFD and its application to engine modeling. Applied Energy, 103, 116-127. doi:10.1016/j.apenergy.2012.09.013

Torregrosa, A. J., Broatch, A., Navarro, R., & García-Tíscar, J. (2014). Acoustic characterization of automotive turbocompressors. International Journal of Engine Research, 16(1), 31-37. doi:10.1177/1468087414562866

Serrano, J. R., Tiseira, A., García-Cuevas, L. M., Inhestern, L. B., & Tartoussi, H. (2017). Radial turbine performance measurement under extreme off-design conditions. Energy, 125, 72-84. doi:10.1016/j.energy.2017.02.118

Piscaglia, F., Onorati, A., Marelli, S., & Capobianco, M. (2018). A detailed one-dimensional model to predict the unsteady behavior of turbocharger turbines for internal combustion engine applications. International Journal of Engine Research, 20(3), 327-349. doi:10.1177/1468087417752525

Galindo, J., Arnau, F. J., García-Cuevas, L. M., & Soler, P. (2018). Experimental validation of a quasi-two-dimensional radial turbine model. International Journal of Engine Research, 21(6), 915-926. doi:10.1177/1468087418788502

Rajoo, S., Romagnoli, A., & Martinez-Botas, R. F. (2012). Unsteady performance analysis of a twin-entry variable geometry turbocharger turbine. Energy, 38(1), 176-189. doi:10.1016/j.energy.2011.12.017

Rajoo, S., & Martinez-Botas, R. (2008). Variable Geometry Mixed Flow Turbine for Turbochargers: An Experimental Study. International Journal of Fluid Machinery and Systems, 1(1), 155-168. doi:10.5293/ijfms.2008.1.1.155

Copeland, C. D., Martinez-Botas, R., & Seiler, M. (2010). Comparison Between Steady and Unsteady Double-Entry Turbine Performance Using the Quasi-Steady Assumption. Journal of Turbomachinery, 133(3). doi:10.1115/1.4000580

Copeland, C. D., Martinez-Botas, R., & Seiler, M. (2011). Unsteady Performance of a Double Entry Turbocharger Turbine With a Comparison to Steady Flow Conditions. Journal of Turbomachinery, 134(2). doi:10.1115/1.4003171

Costall, A. W., McDavid, R. M., Martinez-Botas, R. F., & Baines, N. C. (2010). Pulse Performance Modeling of a Twin Entry Turbocharger Turbine Under Full and Unequal Admission. Journal of Turbomachinery, 133(2). doi:10.1115/1.4000566

Yang, M., Martinez-Botas, R., Rajoo, S., Yokoyama, T., & Ibaraki, S. (2015). An investigation of volute cross-sectional shape on turbocharger turbine under pulsating conditions in internal combustion engine. Energy Conversion and Management, 105, 167-177. doi:10.1016/j.enconman.2015.06.038

Copeland, C. D., Newton, P. J., Martinez-Botas, R., & Seiler, M. (2011). The Effect of Unequal Admission on the Performance and Loss Generation in a Double-Entry Turbocharger Turbine. Journal of Turbomachinery, 134(2). doi:10.1115/1.4003226

Cerdoun, M., & Ghenaiet, A. (2018). Unsteady behaviour of a twin entry radial turbine under engine like inlet flow conditions. Applied Thermal Engineering, 130, 93-111. doi:10.1016/j.applthermaleng.2017.11.001

Payri, F., Benajes, J., & Reyes, M. (1996). Modelling of supercharger turbines in internal-combustion engines. International Journal of Mechanical Sciences, 38(8-9), 853-869. doi:10.1016/0020-7403(95)00105-0

Chiong, M. S., Rajoo, S., Martinez-Botas, R. F., & Costall, A. W. (2012). Engine turbocharger performance prediction: One-dimensional modeling of a twin entry turbine. Energy Conversion and Management, 57, 68-78. doi:10.1016/j.enconman.2011.12.001

Chiong, M. S., Rajoo, S., Romagnoli, A., Costall, A. W., & Martinez-Botas, R. F. (2016). One-dimensional pulse-flow modeling of a twin-scroll turbine. Energy, 115, 1291-1304. doi:10.1016/j.energy.2016.09.041

Galindo, J., Navarro, R., García-Cuevas, L. M., Tarí, D., Tartoussi, H., & Guilain, S. (2018). A zonal approach for estimating pressure ratio at compressor extreme off-design conditions. International Journal of Engine Research, 20(4), 393-404. doi:10.1177/1468087418754899

Payri, F., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2014). External heat losses in small turbochargers: Model and experiments. Energy, 71, 534-546. doi:10.1016/j.energy.2014.04.096

Serrano, J. R., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2015). Turbocharger heat transfer and mechanical losses influence in predicting engines performance by using one-dimensional simulation codes. Energy, 86, 204-218. doi:10.1016/j.energy.2015.03.130

Gil, A., Tiseira, A. O., García-Cuevas, L. M., Usaquén, T. R., & Mijotte, G. (2018). Fast three-dimensional heat transfer model for computing internal temperatures in the bearing housing of automotive turbochargers. International Journal of Engine Research, 21(8), 1286-1297. doi:10.1177/1468087418804949

Serrano, J. R., Olmeda, P., Tiseira, A., García-Cuevas, L. M., & Lefebvre, A. (2013). Theoretical and experimental study of mechanical losses in automotive turbochargers. Energy, 55, 888-898. doi:10.1016/j.energy.2013.04.042

Piñero, G., Vergara, L., Desantes, J. M., & Broatch, A. (2000). Estimation of velocity fluctuation in internal combustion engine exhaust systems through beamforming techniques. Measurement Science and Technology, 11(11), 1585-1595. doi:10.1088/0957-0233/11/11/307

Zimmermann, R., Baar, R., & Biet, C. (2016). Determination of the isentropic turbine efficiency due to adiabatic measurements and the validation of the conditions via a new criterion. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(24), 4485-4494. doi:10.1177/0954406216670683

Serrano, J. R., Arnau, F. J., Gracía-Cuevas, L. M., Samala, V., & Smith, L. (2019). Experimental approach for the characterization and performance analysis of twin entry radial-inflow turbines in a gas stand and with different flow admission conditions. Applied Thermal Engineering, 159, 113737. doi:10.1016/j.applthermaleng.2019.113737

Serrano, J. R., Olmeda, P., Páez, A., & Vidal, F. (2010). An experimental procedure to determine heat transfer properties of turbochargers. Measurement Science and Technology, 21(3), 035109. doi:10.1088/0957-0233/21/3/035109

Serrano, J. R., Arnau, F. J., Dolz, V., Tiseira, A., & Cervelló, C. (2008). A model of turbocharger radial turbines appropriate to be used in zero- and one-dimensional gas dynamics codes for internal combustion engines modelling. Energy Conversion and Management, 49(12), 3729-3745. doi:10.1016/j.enconman.2008.06.031

Serrano, J. R., Arnau, F. J., Fajardo, P., Reyes Belmonte, M. A., & Vidal, F. (2012). Contribution to the Modeling and Understanding of Cold Pulsating Flow Influence in the Efficiency of Small Radial Turbines for Turbochargers. Journal of Engineering for Gas Turbines and Power, 134(10). doi:10.1115/1.4007027

Serrano, J. R., Arnau, F. J., García-Cuevas, L. M., Dombrovsky, A., & Tartoussi, H. (2016). Development and validation of a radial turbine efficiency and mass flow model at design and off-design conditions. Energy Conversion and Management, 128, 281-293. doi:10.1016/j.enconman.2016.09.032

Chen, H., Hakeem, I., & Martinez-Botas, R. F. (1996). Modelling of a Turbocharger Turbine Under Pulsating Inlet Conditions. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 210(5), 397-408. doi:10.1243/pime_proc_1996_210_063_02

Galindo, J., Serrano, J. R., Arnau, F. J., & Piqueras, P. (2009). Description of a Semi-Independent Time Discretization Methodology for a One-Dimensional Gas Dynamics Model. Journal of Engineering for Gas Turbines and Power, 131(3). doi:10.1115/1.2983015

Van Leer, B. (1974). Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. Journal of Computational Physics, 14(4), 361-370. doi:10.1016/0021-9991(74)90019-9

Toro, E. F., Spruce, M., & Speares, W. (1994). Restoration of the contact surface in the HLL-Riemann solver. Shock Waves, 4(1), 25-34. doi:10.1007/bf01414629

Courant, R., Friedrichs, K., & Lewy, H. (1928). �ber die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen, 100(1), 32-74. doi:10.1007/bf01448839

Harris, F. J. (1978). On the use of windows for harmonic analysis with the discrete Fourier transform. Proceedings of the IEEE, 66(1), 51-83. doi:10.1109/proc.1978.10837

Welch, P. (1967). The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 15(2), 70-73. doi:10.1109/tau.1967.1161901

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem