Mostrar el registro sencillo del ítem
dc.contributor.author | Cardona, M. | es_ES |
dc.contributor.author | Serrano, F. | es_ES |
dc.contributor.author | Martín, J. A. | es_ES |
dc.contributor.author | Rausell, E. | es_ES |
dc.contributor.author | Saltaren, R. | es_ES |
dc.contributor.author | García-Cena, C. | es_ES |
dc.date.accessioned | 2021-02-03T08:00:17Z | |
dc.date.available | 2021-02-03T08:00:17Z | |
dc.date.issued | 2020-12-23 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/160618 | |
dc.description.abstract | [EN] A robotic exoskeleton is an electromechanical device that can be worn by a person to increase its physical capacity, to assist locomotion or for gait rehabilitation processes. In the case of rehabilitation exoskeletons, the control system is required to be smooth and capable to match accurately with the patients’ evolution in order to optimize the eciency of their recovery, this implies the design of robust and precise controllers. In this paper, kinematic analysis, dynamic analysis and control system evaluation for ALICE rehabilitation exoskeleton is presented. Among the control techniques used are: the PD controller, adaptive PD, and the sliding mode controller. In addition, a stability analysis using the Lyapunov criterion is performed. To test the performance of the controllers, gait data obtained by the ONCE School of Physiotherapy in Madrid, which correspond to healthy people and people with multiple sclerosis, are used. MATLAB as simulation software and programming language is used. | es_ES |
dc.description.abstract | [ES] Un exoesqueleto robótico es un dispositivo electromecánico utilizado para aumentar la capacidad física de una persona, como ayuda a la locomoción o para procesos de rehabilitación de la marcha. En el caso de los exoesqueletos de rehabilitación se requiere que el sistema de control sea capaz de adaptarse adecuadamente a la evolución del paciente con el fin de optimizar su recuperación, esto implica el diseño de controladores robustos y precisos. En este trabajo se presenta el análisis cinemático, análisis dinámico y evaluación del sistema de control del exoesqueleto de rehabilitación ALICE. Dentro de las técnicas de control presentadas se encuentran: el controlador PD, PD adaptativo, y el controlador en modo deslizante. Además, se realiza un análisis de estabilidad utilizando el criterio de Lyapunov. Para probar el rendimiento de los reguladores, se utiliza un conjunto de datos de la Escuela de Fisioterapia de la ONCE de Madrid, correspondiente a personas sanas y personas con esclerosis múltiple. Se utiliza MATLAB como software de simulación y lenguaje de programación. | es_ES |
dc.description.sponsorship | Manuel Cardona agradece a la Fundación Carolina y a la Universidad Politécnica de Madrid, España, por el apoyo para la realización de esta investigación gracias a la beca de Doctorado otorgada en el marco del convenio con la Universidad Don Bosco, El Salvador. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Control | es_ES |
dc.subject | Dynamics | es_ES |
dc.subject | Exoskeleton | es_ES |
dc.subject | Multiple sclerosis | es_ES |
dc.subject | Lower limb | es_ES |
dc.subject | Rehabilitation | es_ES |
dc.subject | Robotics | es_ES |
dc.subject | Dinámica | es_ES |
dc.subject | Exoesqueleto | es_ES |
dc.subject | Esclerosis múltiple | es_ES |
dc.subject | Miembro inferior | es_ES |
dc.subject | Rehabilitación | es_ES |
dc.subject | Robótica | es_ES |
dc.title | El exoesqueleto de rehabilitación de la marcha ALICE: análisis dinámico y evaluación del sistema de control utilizando cuaternios de Hamilton | es_ES |
dc.title.alternative | The exoskeleton for gait rehabilitation ALICE: dynamic analysis and control system evaluation using Hamilton quaternions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/riai.2020.12558 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Cardona, M.; Serrano, F.; Martín, JA.; Rausell, E.; Saltaren, R.; García-Cena, C. (2020). El exoesqueleto de rehabilitación de la marcha ALICE: análisis dinámico y evaluación del sistema de control utilizando cuaternios de Hamilton. Revista Iberoamericana de Automática e Informática industrial. 18(1):48-57. https://doi.org/10.4995/riai.2020.12558 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2020.12558 | es_ES |
dc.description.upvformatpinicio | 48 | es_ES |
dc.description.upvformatpfin | 57 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 18 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\12558 | es_ES |
dc.contributor.funder | Universidad Politécnica de Madrid | |
dc.description.references | Abolvafaei, M., Ganjefar, S., 2019. Maximum power extraction from a wind turbine using second-order fast terminal sliding mode control. Renewable Energy 139, 1437 - 1446. https://doi.org/10.1016/j.renene.2019.03.044 | es_ES |
dc.description.references | Arnold, E. M., Ward, S. R., Lieber, R. L., Delp, S. L., 2010. A model of the lower limb for analysis of human movement. | es_ES |
dc.description.references | Cardona, M., Destarac, M. A., García, C. E., Nov 2017. Exoskeleton robots for rehabilitation: State of the art and future trends. In: 2017 IEEE 37th Central America and Panama Convention (CONCAPAN XXXVII). pp. 1-6. https://doi.org/10.1109/CONCAPAN.2017.8278480 | es_ES |
dc.description.references | Cardona, M., García Cena, C. E., 2019a. Biomechanical analysis of the lower limb: A full-body musculoskeletal model for muscle-driven simulation. IEEE Access 7, 92709-92723. https://doi.org/10.1109/ACCESS.2019.2927515 | es_ES |
dc.description.references | Cardona, M., García Cena, C. E., October 2019b. Musculoskeletal modeling as a tool for biomechanical analysis of normal and pathological gait. VIII Latin American Conference on Biomedical Engineering and XLII National Conference on Biomedical Engineering. CLAIB 2019. IFMBE Proceedings, Springer 75, 955-963. https://doi.org/10.1007/978-3-030-30648-9_124 | es_ES |
dc.description.references | Chong, L., Jianfeng, S., Linhong, J., 2013. Lower limb rehabilitation robots: A review. In: World Congress on Medical Physics and Biomedical Engineering. IFMBE Proceedings. Vol. 39. p. 2042-2045. https://doi.org/10.1007/978-3-642-29305-4_536 | es_ES |
dc.description.references | Eker, I., 2010. Second-order sliding mode control with experimental application. ISA Transactions 49 (3), 394 - 405. https://doi.org/10.1016/j.isatra.2010.03.010 | es_ES |
dc.description.references | He, W., Li, Z., Dong, Y., Zhao, T., Jan 2019. Design and adaptive control for an upper limb robotic exoskeleton in presence of input saturation. IEEE Transactions on Neural Networks and Learning Systems 30 (1), 97-108. DOI: 10.1109/TNNLS.2018.2828813 https://doi.org/10.1109/TNNLS.2018.2828813 | es_ES |
dc.description.references | Kapandji, A., 2010. Fisiología Articular, 6th Edition. Vol. 2. Editorial Panamericana, France. | es_ES |
dc.description.references | Maciejasz, P., Eschweiler, J., Gerlach-Hahn, K., et.al., 2014. "A survey on robotic devices for upper limb rehabilitation". https://doi.org/10.1186/1743-0003-11-3 | es_ES |
dc.description.references | Proietti, T., Jarrasse, N., Roby-Brami, A., Morel, G., April 2015. Adaptive control of a robotic exoskeleton for neurorehabilitation. In: 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER). pp. 803-806. https://doi.org/10.1109/NER.2015.7146745 | es_ES |
dc.description.references | Reinkensmeyer, D. J., 2003. How to retrain movement after neurologic injury: a computational rationale for incorporating robot (or therapist) assistance. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439). Vol. 2. pp. 1479-1482 Vol.2. | es_ES |
dc.description.references | Reinkensmeyer, D. J., Aoyagi, D., Emken, J., Galvez, J., Ichinose W, W., etal, Aug-Sep 2006. Tools for understanding and optimizing robotic gait training. J Rehabil Res Dev 43 (5), 657-70. https://doi.org/10.1682/JRRD.2005.04.0073 | es_ES |
dc.description.references | Riener, R., Guidali, M., Keller, U., Duschau-Wicke, A., et.al., 2014. "a survey on robotic devices for upper limb rehabilitation". | es_ES |
dc.description.references | Serrano, F. E., Rossell, J. M., 2015. Complete kinematic analysis of the stewartgough platform by unit quaternions. Mechanics and Control (Vol, 34, no. 4), 59-69. | es_ES |
dc.description.references | Spong, M., Hutchinson, S., Vidyasagar, M., 2006. Robot Modeling and Control. John Wiley and Sons. | es_ES |
dc.description.references | Wang, J.-Y., Liang, H.-Z., Sun, Z.-W., Wu, S.-N., Zhang, S.-J., 2013. Relative motion coupled control based on dual quaternion. Aerospace Science and Technology 25 (1), 102 - 113. https://doi.org/10.1016/j.ast.2011.12.013 | es_ES |
dc.description.references | Wu, Q., Chen, B., Wu, H., 2019. Rbfn-based adaptive backstepping sliding mode control of an upper-limb exoskeleton with dynamic uncertainties. IEEE Access 7, 134635-134646. https://doi.org/10.1109/ACCESS.2019.2941973 | es_ES |
dc.description.references | Yakub, F., Khudzari, A., Mori, Y., March 2014. "recent trends for practical rehabilitation robotics, current challenges and the future". https://doi.org/10.1097/MRR.0000000000000035 | es_ES |
dc.description.references | Yang, Z., Zhu, Y., Yang, X., Zhang, Y., Aug 2009. Impedance control of exoskeleton suit based on adaptive rbf neural network. In: 2009 International Conference on Intelligent Human-Machine Systems and Cybernetics. Vol. 1. pp. 182-187. https://doi.org/10.1109/IHMSC.2009.54 | es_ES |
dc.description.references | Zhou, W., Chen, W., Liu, H., Li, X., 2015. A new forward kinematic algorithm for a general stewart platform. Mechanism and Machine Theory 87, 177 - 190. https://doi.org/10.1016/j.mechmachtheory.2015.01.002 | es_ES |
dc.description.references | Özgur, E., Mezouar, Y., 2016. Kinematic modeling and control of a robot arm ¨ using unit dual quaternions. Robotics and Autonomous Systems 77, 66 - 73. https://doi.org/10.1016/j.robot.2015.12.005 | es_ES |
dc.description.references | Ilyas Eker, 2010. Second-order sliding mode control with experimental application. ISA Transactions 49 (3), 394 - 405. https://doi.org/10.1016/j.isatra.2010.03.010 | es_ES |