- -

Proteomic footprint of ultrasound intensification on sliced dry-cured ham subjected to mild thermal conditions

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Proteomic footprint of ultrasound intensification on sliced dry-cured ham subjected to mild thermal conditions

Show simple item record

Files in this item

dc.contributor.author López-Pedrouso, M. es_ES
dc.contributor.author Pérez-Santaescolástica, C. es_ES
dc.contributor.author Franco, D. es_ES
dc.contributor.author Carballo, J. es_ES
dc.contributor.author Garcia-Perez, J.V. es_ES
dc.contributor.author Benedito Fort, José Javier es_ES
dc.contributor.author Zapata, C. es_ES
dc.contributor.author Lorenzo, J. M. es_ES
dc.date.accessioned 2021-02-06T04:32:56Z
dc.date.available 2021-02-06T04:32:56Z
dc.date.issued 2019-02-20 es_ES
dc.identifier.issn 1874-3919 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160806
dc.description.abstract [EN] Ultrasound can intensify the heating process used to correct texture defects in dry-cured hams. The effect of ultrasound-assisted heating on the proteome of sliced dry-cured ham was evaluated. Dry-cured hams with high proteolysis index (PI > 36) were sliced, vacuum packed and subjected to conventional (CV) and ultrasound-assisted (US) thermal treatments. Comparative proteome profiling between sample groups was assessed by two-dimensional electrophoresis (2-DE) coupled to tandem mass spectrometry. It was found that protein fragmentation increased markedly after US thermal treatment. Specifically, fragments of the major myofibrillar protein, actin, were abundantly over-represented following US heating. In addition, five unfragmented sarcoplasmic proteins (i.e. fatty acid-binding protein, peroxiredoxin-6, superoxide dismutase, carbonyl reductase and aminoacylase) showed increased abundance in the US sample group. These results suggest candidate biomarkers to monitor proteolysis intensity and proteolysis-independent effects linked to cured ham quality by ultrasound application. Significance: The present proteome profiling study of treated dry-cured ham demonstrates the impact of ultrasound action on proteins. Moreover, negative organoleptic effects can be appearing with ultrasound treatment due to proteolysis increase. Therefore, the proteolysis monitoring could help to control these effects. In this regards, our results suggest that actin can be a candidate biomarker to monitor proteolysis intensity. es_ES
dc.description.sponsorship This research was supported by Grant RTA 2013-00030-C03-03 from INIA (Spain). Acknowledgements to INIA for granting Cristina Perez Santaescolastica with a predoctoral scholarship (grant number CPD2015-0212). Jose M. Lorenzo is member of the MARCARNE network, funded by CYTED (ref. 116RT0503). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Proteomics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Ham proteolysis biomarkers es_ES
dc.subject Actin es_ES
dc.subject Emerging technologies es_ES
dc.subject Ultrasound biomarkers es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Proteomic footprint of ultrasound intensification on sliced dry-cured ham subjected to mild thermal conditions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jprot.2018.10.002 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CYTED//116RT0503//MARCAS DE CALIDAD DE CARNE Y PRODUCTOS CARNICOS IBEROAMERICANOS/MARCARNE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/INIA//CPD2015-0212/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTA2013-00030-C03-02/ES/Caracterización y detección objetiva de defectos de textura en jamón curado mediante tecnologías no destructivas. Desarrollo y evaluación de medidas correctoras/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation López-Pedrouso, M.; Pérez-Santaescolástica, C.; Franco, D.; Carballo, J.; Garcia-Perez, J.; Benedito Fort, JJ.; Zapata, C.... (2019). Proteomic footprint of ultrasound intensification on sliced dry-cured ham subjected to mild thermal conditions. Journal of Proteomics. 193:123-130. https://doi.org/10.1016/j.jprot.2018.10.002 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jprot.2018.10.002 es_ES
dc.description.upvformatpinicio 123 es_ES
dc.description.upvformatpfin 130 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 193 es_ES
dc.identifier.pmid 30312679 es_ES
dc.relation.pasarela S\394454 es_ES
dc.contributor.funder CYTED Ciencia y Tecnología para el Desarrollo es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Bermúdez, R., Franco, D., Carballo, J., & Lorenzo, J. M. (2014). Physicochemical changes during manufacture and final sensory characteristics of dry-cured Celta ham. Effect of muscle type. Food Control, 43, 263-269. doi:10.1016/j.foodcont.2014.03.028 es_ES
dc.description.references Pérez-Santaescolástica, C., Carballo, J., Fulladosa, E., Garcia-Perez, J. V., Benedito, J., & Lorenzo, J. M. (2018). Effect of proteolysis index level on instrumental adhesiveness, free amino acids content and volatile compounds profile of dry-cured ham. Food Research International, 107, 559-566. doi:10.1016/j.foodres.2018.03.001 es_ES
dc.description.references Piras, F., Fois, F., Casti, D., Mazza, R., Consolati, S. G., & Mazzette, R. (2016). Shelf Life of Sliced Dry-Cured Ham Packaged Under Vacuum. Journal of Food Processing and Preservation, 40(6), 1223-1228. doi:10.1111/jfpp.12706 es_ES
dc.description.references Fulladosa, E., Austrich, A., Muñoz, I., Guerrero, L., Benedito, J., Lorenzo, J. M., & Gou, P. (2018). Texture characterization of dry-cured ham using multi energy X-ray analysis. Food Control, 89, 46-53. doi:10.1016/j.foodcont.2018.01.020 es_ES
dc.description.references Čuboň, J., Cviková, P., Haščík, P., Kačániová, M., Kunová, S., Hleba, L., … Tkáčová, J. (2017). THE PROTEINS DEGRADATION IN DRY CURED MEAT AND METHODS OF ANALYSIS : A REVIEW. Journal of Microbiology, Biotechnology and Food Sciences, 7(2), 209-220. doi:10.15414/jmbfs.2017.7.2.209-220 es_ES
dc.description.references Bermúdez, R., Franco, D., Carballo, J., Sentandreu, M. Á., & Lorenzo, J. M. (2014). Influence of muscle type on the evolution of free amino acids and sarcoplasmic and myofibrillar proteins through the manufacturing process of Celta dry-cured ham. Food Research International, 56, 226-235. doi:10.1016/j.foodres.2013.12.023 es_ES
dc.description.references Ruiz-Ramírez, J., Arnau, J., Serra, X., & Gou, P. (2006). Effect of pH24, NaCl content and proteolysis index on the relationship between water content and texture parameters in biceps femoris and semimembranosus muscles in dry-cured ham. Meat Science, 72(2), 185-194. doi:10.1016/j.meatsci.2005.06.016 es_ES
dc.description.references López-Pedrouso, M., Pérez-Santaescolástica, C., Franco, D., Fulladosa, E., Carballo, J., Zapata, C., & Lorenzo, J. M. (2018). Comparative proteomic profiling of myofibrillar proteins in dry-cured ham with different proteolysis indices and adhesiveness. Food Chemistry, 244, 238-245. doi:10.1016/j.foodchem.2017.10.068 es_ES
dc.description.references Morales, R., Guerrero, L., Aguiar, A. P. S., Guàrdia, M. D., & Gou, P. (2013). Factors affecting dry-cured ham consumer acceptability. Meat Science, 95(3), 652-657. doi:10.1016/j.meatsci.2013.05.012 es_ES
dc.description.references Škrlep, M., Čandek-Potokar, M., Mandelc, S., Javornik, B., Gou, P., Chambon, C., & Santé-Lhoutellier, V. (2011). Proteomic profile of dry-cured ham relative to PRKAG3 or CAST genotype, level of salt and pastiness. Meat Science, 88(4), 657-667. doi:10.1016/j.meatsci.2011.02.025 es_ES
dc.description.references Contreras, M., Benedito, J., Bon, J., & Garcia-Perez, J. V. (2018). Intensification of heat transfer during mild thermal treatment of dry-cured ham by using airborne ultrasound. Ultrasonics Sonochemistry, 41, 206-212. doi:10.1016/j.ultsonch.2017.09.019 es_ES
dc.description.references Alarcon-Rojo, A. D., Janacua, H., Rodriguez, J. C., Paniwnyk, L., & Mason, T. J. (2015). Power ultrasound in meat processing. Meat Science, 107, 86-93. doi:10.1016/j.meatsci.2015.04.015 es_ES
dc.description.references Ozuna, C., Puig, A., García-Pérez, J. V., Mulet, A., & Cárcel, J. A. (2013). Influence of high intensity ultrasound application on mass transport, microstructure and textural properties of pork meat (Longissimus dorsi) brined at different NaCl concentrations. Journal of Food Engineering, 119(1), 84-93. doi:10.1016/j.jfoodeng.2013.05.016 es_ES
dc.description.references Li, Z., Li, X., Gao, X., Shen, Q. W., Du, M., & Zhang, D. (2017). Phosphorylation prevents in vitro myofibrillar proteins degradation by μ-calpain. Food Chemistry, 218, 455-462. doi:10.1016/j.foodchem.2016.09.048 es_ES
dc.description.references Huang, H., Larsen, M. R., & Lametsch, R. (2012). Changes in phosphorylation of myofibrillar proteins during postmortem development of porcine muscle. Food Chemistry, 134(4), 1999-2006. doi:10.1016/j.foodchem.2012.03.132 es_ES
dc.description.references Stadnik, J., Dolatowski, Z. J., & Baranowska, H. M. (2008). Effect of ultrasound treatment on water holding properties and microstructure of beef (m. semimembranosus) during ageing. LWT - Food Science and Technology, 41(10), 2151-2158. doi:10.1016/j.lwt.2007.12.003 es_ES
dc.description.references Jayasooriya, S. D., Bhandari, B. R., Torley, P., & D’Arcy, B. R. (2004). Effect of High Power Ultrasound Waves on Properties of Meat: A Review. International Journal of Food Properties, 7(2), 301-319. doi:10.1081/jfp-120030039 es_ES
dc.description.references Corona, E., Garcia-Perez, J. V., Gomez Alvarez-Arenas, T. E., Watson, N., Povey, M. J. W., & Benedito, J. (2013). Advances in the ultrasound characterization of dry-cured meat products. Journal of Food Engineering, 119(3), 464-470. doi:10.1016/j.jfoodeng.2013.06.023 es_ES
dc.description.references Pérez-Santaescolástica, C., Carballo, J., Fulladosa, E., Garcia-Perez José, V., Benedito, J., & Lorenzo, J. M. (2018). Application of temperature and ultrasound as corrective measures to decrease the adhesiveness in dry-cured ham. Influence on free amino acid and volatile compound profile. Food Research International, 114, 140-150. doi:10.1016/j.foodres.2018.08.006 es_ES
dc.description.references Grossi, A., Bolumar, T., Søltoft-Jensen, J., & Orlien, V. (2014). High pressure treatment of brine enhanced pork semitendinosus: Effect on microbial stability, drip loss, lipid and protein oxidation, and sensory properties. Innovative Food Science & Emerging Technologies, 22, 11-21. doi:10.1016/j.ifset.2013.09.011 es_ES
dc.description.references Paredi, G., Benoni, R., Pighini, G., Ronda, L., Dowle, A., Ashford, D., … Mozzarelli, A. (2017). Proteomics of Parma Dry-Cured Ham: Analysis of Salting Exudates. Journal of Agricultural and Food Chemistry, 65(30), 6307-6316. doi:10.1021/acs.jafc.7b01293 es_ES
dc.description.references Schilling, M. W., Suman, S. P., Zhang, X., Nair, M. N., Desai, M. A., Cai, K., … Allen, P. J. (2017). Proteomic approach to characterize biochemistry of meat quality defects. Meat Science, 132, 131-138. doi:10.1016/j.meatsci.2017.04.018 es_ES
dc.description.references Picard, B., Gagaoua, M., Micol, D., Cassar-Malek, I., Hocquette, J.-F., & Terlouw, C. E. M. (2014). Inverse Relationships between Biomarkers and Beef Tenderness According to Contractile and Metabolic Properties of the Muscle. Journal of Agricultural and Food Chemistry, 62(40), 9808-9818. doi:10.1021/jf501528s es_ES
dc.description.references Hwang, I. H., Park, B. Y., Kim, J. H., Cho, S. H., & Lee, J. M. (2005). Assessment of postmortem proteolysis by gel-based proteome analysis and its relationship to meat quality traits in pig longissimus. Meat Science, 69(1), 79-91. doi:10.1016/j.meatsci.2004.06.019 es_ES
dc.description.references Mora, L., Sentandreu, M. A., & Toldrá, F. (2011). Intense Degradation of Myosin Light Chain Isoforms in Spanish Dry-Cured Ham. Journal of Agricultural and Food Chemistry, 59(8), 3884-3892. doi:10.1021/jf104070q es_ES
dc.description.references Franco, D., Mato, A., Salgado, F. J., López-Pedrouso, M., Carrera, M., Bravo, S., … Zapata, C. (2015). Tackling proteome changes in the longissimus thoracis bovine muscle in response to pre-slaughter stress. Journal of Proteomics, 122, 73-85. doi:10.1016/j.jprot.2015.03.029 es_ES
dc.description.references Vorm, O., Roepstorff, P., & Mann, M. (1994). Improved Resolution and Very High Sensitivity in MALDI TOF of Matrix Surfaces Made by Fast Evaporation. Analytical Chemistry, 66(19), 3281-3287. doi:10.1021/ac00091a044 es_ES
dc.description.references Lana, A., & Zolla, L. (2016). Proteolysis in meat tenderization from the point of view of each single protein: A proteomic perspective. Journal of Proteomics, 147, 85-97. doi:10.1016/j.jprot.2016.02.011 es_ES
dc.description.references Kang, D., Gao, X., Ge, Q., Zhou, G., & Zhang, W. (2017). Effects of ultrasound on the beef structure and water distribution during curing through protein degradation and modification. Ultrasonics Sonochemistry, 38, 317-325. doi:10.1016/j.ultsonch.2017.03.026 es_ES
dc.description.references Zou, Y., Xu, P., Wu, H., Zhang, M., Sun, Z., Sun, C., … Xu, W. (2018). Effects of different ultrasound power on physicochemical property and functional performance of chicken actomyosin. International Journal of Biological Macromolecules, 113, 640-647. doi:10.1016/j.ijbiomac.2018.02.039 es_ES
dc.description.references McDonnell, C. K., Allen, P., Morin, C., & Lyng, J. G. (2014). The effect of ultrasonic salting on protein and water–protein interactions in meat. Food Chemistry, 147, 245-251. doi:10.1016/j.foodchem.2013.09.125 es_ES
dc.description.references Wang, A., Kang, D., Zhang, W., Zhang, C., Zou, Y., & Zhou, G. (2018). Changes in calpain activity, protein degradation and microstructure of beef M. semitendinosus by the application of ultrasound. Food Chemistry, 245, 724-730. doi:10.1016/j.foodchem.2017.12.003 es_ES
dc.description.references Legay, M., Gondrexon, N., Le Person, S., Boldo, P., & Bontemps, A. (2011). Enhancement of Heat Transfer by Ultrasound: Review and Recent Advances. International Journal of Chemical Engineering, 2011, 1-17. doi:10.1155/2011/670108 es_ES
dc.description.references Zou, Y., Zhang, W., Kang, D., & Zhou, G. (2017). Improvement of tenderness and water holding capacity of spiced beef by the application of ultrasound during cooking. International Journal of Food Science & Technology, 53(3), 828-836. doi:10.1111/ijfs.13659 es_ES
dc.description.references Bermúdez, R., Franco, D., Carballo, J., & Lorenzo, J. M. (2014). Influence of type of muscle on volatile compounds throughout the manufacture of Celta dry-cured ham. Food Science and Technology International, 21(8), 581-592. doi:10.1177/1082013214554935 es_ES
dc.description.references Jia, X., Veiseth-Kent, E., Grove, H., Kuziora, P., Aass, L., Hildrum, K. I., & Hollung, K. (2009). Peroxiredoxin-6—A potential protein marker for meat tenderness in bovine longissimus thoracis muscle1. Journal of Animal Science, 87(7), 2391-2399. doi:10.2527/jas.2009-1792 es_ES
dc.description.references Cruxen, C. E. dos S., Funck, G. D., Dannenberg, G. da S., Haubert, L., Marques, J. de L., Kroning, I. S., … Fiorentini, Â. M. (2017). Characterization of Staphylococcus xylosus LQ3 and its application in dried cured sausage. LWT, 86, 538-543. doi:10.1016/j.lwt.2017.08.045 es_ES


This item appears in the following Collection(s)

Show simple item record