- -

Incorporation of natural antioxidants from rice straw into renewable starch films

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Incorporation of natural antioxidants from rice straw into renewable starch films

Mostrar el registro completo del ítem

Menzel, C.; González Martínez, MC.; Vilaplana, F.; Diretto, G.; Chiralt Boix, MA. (2020). Incorporation of natural antioxidants from rice straw into renewable starch films. International Journal of Biological Macromolecules. (146):976-986. https://doi.org/10.1016/j.ijbiomac.2019.09.222

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161377

Ficheros en el ítem

Metadatos del ítem

Título: Incorporation of natural antioxidants from rice straw into renewable starch films
Autor: Menzel, Carolin González Martínez, María Consuelo Vilaplana, Francisco Diretto, Gianfranco Chiralt Boix, Mª Amparo
Entidad UPV: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Fecha difusión:
Resumen:
[EN] This study showed that rice straw waste is a valuable source for the extraction of water-soluble phenolic compounds that can be successfully incorporated into bioactive starch-based films. The major phenolic compounds ...[+]
Palabras clave: Molecular weight , Antimicrobial activity , DPPH , Food packaging , Phenolic add
Derechos de uso: Reconocimiento (by)
Fuente:
International Journal of Biological Macromolecules. (issn: 0141-8130 )
DOI: 10.1016/j.ijbiomac.2019.09.222
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.ijbiomac.2019.09.222
Código del Proyecto:
info:eu-repo/grantAgreement/Swedish Research Council Formas//2015-00550/
info:eu-repo/grantAgreement/MINECO//AGL2016-76699-R/ES/Materiales Biodegradables Multicapa de Alta Barrera para el Envasado Activo de Alimentos/
Agradecimientos:
This work was supported by the Swedish Research Council Formas [2015-00550] and by the project AGL2016-76699-R from Spanish Ministerio de Educacion y Ciencia.
Tipo: Artículo

References

Peanparkdee, M., & Iwamoto, S. (2019). Bioactive compounds from by-products of rice cultivation and rice processing: Extraction and application in the food and pharmaceutical industries. Trends in Food Science & Technology, 86, 109-117. doi:10.1016/j.tifs.2019.02.041

Karimi, E., Mehrabanjoubani, P., Keshavarzian, M., Oskoueian, E., Jaafar, H. Z., & Abdolzadeh, A. (2014). Identification and quantification of phenolic and flavonoid components in straw and seed husk of some rice varieties (Oryza sativaL.) and their antioxidant properties. Journal of the Science of Food and Agriculture, 94(11), 2324-2330. doi:10.1002/jsfa.6567

Riaz, A., Lei, S., Akhtar, H. M. S., Wan, P., Chen, D., Jabbar, S., … Zeng, X. (2018). Preparation and characterization of chitosan-based antimicrobial active food packaging film incorporated with apple peel polyphenols. International Journal of Biological Macromolecules, 114, 547-555. doi:10.1016/j.ijbiomac.2018.03.126 [+]
Peanparkdee, M., & Iwamoto, S. (2019). Bioactive compounds from by-products of rice cultivation and rice processing: Extraction and application in the food and pharmaceutical industries. Trends in Food Science & Technology, 86, 109-117. doi:10.1016/j.tifs.2019.02.041

Karimi, E., Mehrabanjoubani, P., Keshavarzian, M., Oskoueian, E., Jaafar, H. Z., & Abdolzadeh, A. (2014). Identification and quantification of phenolic and flavonoid components in straw and seed husk of some rice varieties (Oryza sativaL.) and their antioxidant properties. Journal of the Science of Food and Agriculture, 94(11), 2324-2330. doi:10.1002/jsfa.6567

Riaz, A., Lei, S., Akhtar, H. M. S., Wan, P., Chen, D., Jabbar, S., … Zeng, X. (2018). Preparation and characterization of chitosan-based antimicrobial active food packaging film incorporated with apple peel polyphenols. International Journal of Biological Macromolecules, 114, 547-555. doi:10.1016/j.ijbiomac.2018.03.126

Alsaggaf, M. S., Moussa, S. H., & Tayel, A. A. (2017). Application of fungal chitosan incorporated with pomegranate peel extract as edible coating for microbiological, chemical and sensorial quality enhancement of Nile tilapia fillets. International Journal of Biological Macromolecules, 99, 499-505. doi:10.1016/j.ijbiomac.2017.03.017

De Moraes Crizel, T., Haas Costa, T. M., de Oliveira Rios, A., & Hickmann Flôres, S. (2016). Valorization of food-grade industrial waste in the obtaining active biodegradable films for packaging. Industrial Crops and Products, 87, 218-228. doi:10.1016/j.indcrop.2016.04.039

Mushtaq, M., Gani, A., Gani, A., Punoo, H. A., & Masoodi, F. A. (2018). Use of pomegranate peel extract incorporated zein film with improved properties for prolonged shelf life of fresh Himalayan cheese (Kalari/kradi). Innovative Food Science & Emerging Technologies, 48, 25-32. doi:10.1016/j.ifset.2018.04.020

Yildirim, S., Röcker, B., Pettersen, M. K., Nilsen-Nygaard, J., Ayhan, Z., Rutkaite, R., … Coma, V. (2017). Active Packaging Applications for Food. Comprehensive Reviews in Food Science and Food Safety, 17(1), 165-199. doi:10.1111/1541-4337.12322

Menzel, C., González-Martínez, C., Chiralt, A., & Vilaplana, F. (2019). Antioxidant starch films containing sunflower hull extracts. Carbohydrate Polymers, 214, 142-151. doi:10.1016/j.carbpol.2019.03.022

Luchese, C. L., Uranga, J., Spada, J. C., Tessaro, I. C., & de la Caba, K. (2018). Valorisation of blueberry waste and use of compression to manufacture sustainable starch films with enhanced properties. International Journal of Biological Macromolecules, 115, 955-960. doi:10.1016/j.ijbiomac.2018.04.162

Forssell, P. (2002). Oxygen permeability of amylose and amylopectin films. Carbohydrate Polymers, 47(2), 125-129. doi:10.1016/s0144-8617(01)00175-8

Olsson, E., Menzel, C., Johansson, C., Andersson, R., Koch, K., & Järnström, L. (2013). The effect of pH on hydrolysis, cross-linking and barrier properties of starch barriers containing citric acid. Carbohydrate Polymers, 98(2), 1505-1513. doi:10.1016/j.carbpol.2013.07.040

Menzel, C., Olsson, E., Plivelic, T. S., Andersson, R., Johansson, C., Kuktaite, R., … Koch, K. (2013). Molecular structure of citric acid cross-linked starch films. Carbohydrate Polymers, 96(1), 270-276. doi:10.1016/j.carbpol.2013.03.044

Mathew, S., & Abraham, T. E. (2008). Characterisation of ferulic acid incorporated starch–chitosan blend films. Food Hydrocolloids, 22(5), 826-835. doi:10.1016/j.foodhyd.2007.03.012

Vilaplana, F., Hasjim, J., & Gilbert, R. G. (2012). Amylose content in starches: Toward optimal definition and validating experimental methods. Carbohydrate Polymers, 88(1), 103-111. doi:10.1016/j.carbpol.2011.11.072

Grosso, V., Farina, A., Giorgi, D., Nardi, L., Diretto, G., & Lucretti, S. (2017). A high-throughput flow cytometry system for early screening of in vitro made polyploids in Dendrobium hybrids. Plant Cell, Tissue and Organ Culture (PCTOC), 132(1), 57-70. doi:10.1007/s11240-017-1310-8

Cappelli, G., Giovannini, D., Basso, A. L., Demurtas, O. C., Diretto, G., Santi, C., … Mariani, F. (2018). A Corylus avellana L. extract enhances human macrophage bactericidal response against Staphylococcus aureus by increasing the expression of anti-inflammatory and iron metabolism genes. Journal of Functional Foods, 45, 499-511. doi:10.1016/j.jff.2018.04.007

Ciulu, M., Cádiz-Gurrea, M., & Segura-Carretero, A. (2018). Extraction and Analysis of Phenolic Compounds in Rice: A Review. Molecules, 23(11), 2890. doi:10.3390/molecules23112890

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30. doi:10.1016/s0023-6438(95)80008-5

Houdkova, M., Rondevaldova, J., Doskocil, I., & Kokoska, L. (2017). Evaluation of antibacterial potential and toxicity of plant volatile compounds using new broth microdilution volatilization method and modified MTT assay. Fitoterapia, 118, 56-62. doi:10.1016/j.fitote.2017.02.008

Vilaplana, F., & Gilbert, R. G. (2010). Two-Dimensional Size/Branch Length Distributions of a Branched Polymer. Macromolecules, 43(17), 7321-7329. doi:10.1021/ma101349t

Sánchez-Rangel, J. C., Benavides, J., Heredia, J. B., Cisneros-Zevallos, L., & Jacobo-Velázquez, D. A. (2013). The Folin–Ciocalteu assay revisited: improvement of its specificity for total phenolic content determination. Analytical Methods, 5(21), 5990. doi:10.1039/c3ay41125g

Moure, A., Cruz, J. M., Franco, D., Domı́nguez, J. M., Sineiro, J., Domı́nguez, H., … Parajó, J. C. (2001). Natural antioxidants from residual sources. Food Chemistry, 72(2), 145-171. doi:10.1016/s0308-8146(00)00223-5

Liu, W.-C., Halley, P. J., & Gilbert, R. G. (2010). Mechanism of Degradation of Starch, a Highly Branched Polymer, during Extrusion. Macromolecules, 43(6), 2855-2864. doi:10.1021/ma100067x

Carvalho, A. J. F., Zambon, M. D., Curvelo, A. A. S., & Gandini, A. (2003). Size exclusion chromatography characterization of thermoplastic starch composites 1. Influence of plasticizer and fibre content. Polymer Degradation and Stability, 79(1), 133-138. doi:10.1016/s0141-3910(02)00265-3

Castro, J. V., Dumas, C., Chiou, H., Fitzgerald, M. A., & Gilbert, R. G. (2005). Mechanistic Information from Analysis of Molecular Weight Distributions of Starch. Biomacromolecules, 6(4), 2248-2259. doi:10.1021/bm0500401

Alves, V. D., Mali, S., Beléia, A., & Grossmann, M. V. E. (2007). Effect of glycerol and amylose enrichment on cassava starch film properties. Journal of Food Engineering, 78(3), 941-946. doi:10.1016/j.jfoodeng.2005.12.007

Myllärinen, P., Partanen, R., Seppälä, J., & Forssell, P. (2002). Effect of glycerol on behaviour of amylose and amylopectin films. Carbohydrate Polymers, 50(4), 355-361. doi:10.1016/s0144-8617(02)00042-5

Hatfield, R. D., Ralph, J., & Grabber, J. H. (1999). Cell wall cross-linking by ferulates and diferulates in grasses. Journal of the Science of Food and Agriculture, 79(3), 403-407. doi:10.1002/(sici)1097-0010(19990301)79:3<403::aid-jsfa263>3.0.co;2-0

Hulleman, S. H. D., Janssen, F. H. P., & Feil, H. (1998). The role of water during plasticization of native starches. Polymer, 39(10), 2043-2048. doi:10.1016/s0032-3861(97)00301-7

Arvanitoyannis, I., Psomiadou, E., & Nakayama, A. (1996). Edible films made from sodium casemate, starches, sugars or glycerol. Part 1. Carbohydrate Polymers, 31(4), 179-192. doi:10.1016/s0144-8617(96)00123-3

C.T. Greenwood, The Thermal Degradation of Starch, in: M.L. Wolfrom, R.S. Tipson (Eds.), Advances in Carbohydrate Chemistry, Academic Press, 1967, pp. 483–515.

Chai, Y., Wang, M., & Zhang, G. (2013). Interaction between Amylose and Tea Polyphenols Modulates the Postprandial Glycemic Response to High-Amylose Maize Starch. Journal of Agricultural and Food Chemistry, 61(36), 8608-8615. doi:10.1021/jf402821r

Perazzo, K. K. N. C. L., Conceição, A. C. de V., Santos, J. C. P. dos, Assis, D. de J., Souza, C. O., & Druzian, J. I. (2014). Properties and Antioxidant Action of Actives Cassava Starch Films Incorporated with Green Tea and Palm Oil Extracts. PLoS ONE, 9(9), e105199. doi:10.1371/journal.pone.0105199

Atarés, L., Pérez-Masiá, R., & Chiralt, A. (2011). The role of some antioxidants in the HPMC film properties and lipid protection in coated toasted almonds. Journal of Food Engineering, 104(4), 649-656. doi:10.1016/j.jfoodeng.2011.02.005

Bonilla, J., Atarés, L., Vargas, M., & Chiralt, A. (2012). Edible films and coatings to prevent the detrimental effect of oxygen on food quality: Possibilities and limitations. Journal of Food Engineering, 110(2), 208-213. doi:10.1016/j.jfoodeng.2011.05.034

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem