- -

Incorporation of natural antioxidants from rice straw into renewable starch films

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Incorporation of natural antioxidants from rice straw into renewable starch films

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Menzel, Carolin es_ES
dc.contributor.author González Martínez, María Consuelo es_ES
dc.contributor.author Vilaplana, Francisco es_ES
dc.contributor.author Diretto, Gianfranco es_ES
dc.contributor.author Chiralt Boix, Mª Amparo es_ES
dc.date.accessioned 2021-02-16T04:31:54Z
dc.date.available 2021-02-16T04:31:54Z
dc.date.issued 2020-03-01 es_ES
dc.identifier.issn 0141-8130 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161377
dc.description.abstract [EN] This study showed that rice straw waste is a valuable source for the extraction of water-soluble phenolic compounds that can be successfully incorporated into bioactive starch-based films. The major phenolic compounds in the extract were identified as ferulic, p-coumaric and protocatechuic acid using UHPLC-MS. Homogeneous films with antioxidant properties were produced by melt blending and compression molding and the changes in the physico-chemical properties were evaluated. The produced antioxidant starch films were slightly reddish-colored and exhibited good in-vitro antiradical scavenging activity against DPPH*. The addition of the antioxidant extract improved the oxygen barrier properties without negatively affecting the thermal and the water vapor barrier properties. However, antioxidant starch films turned more brittle with increasing amount of the antioxidant extract, which was probably due to interactions of phenolic compounds with the starch chains. The film forming process induced chain scission of starch molecules in all films, shown in a decrease in molecular weight of native starch from 9.1 x 10(6) Da to values as low as 1.0-3.5 x 10(6) Da. This study aids a circular economy by recycling rice straw for the production of bioactive food packaging. es_ES
dc.description.sponsorship This work was supported by the Swedish Research Council Formas [2015-00550] and by the project AGL2016-76699-R from Spanish Ministerio de Educacion y Ciencia. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof International Journal of Biological Macromolecules es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Molecular weight es_ES
dc.subject Antimicrobial activity es_ES
dc.subject DPPH es_ES
dc.subject Food packaging es_ES
dc.subject Phenolic add es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Incorporation of natural antioxidants from rice straw into renewable starch films es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.ijbiomac.2019.09.222 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Swedish Research Council Formas//2015-00550/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2016-76699-R/ES/Materiales Biodegradables Multicapa de Alta Barrera para el Envasado Activo de Alimentos/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Menzel, C.; González Martínez, MC.; Vilaplana, F.; Diretto, G.; Chiralt Boix, MA. (2020). Incorporation of natural antioxidants from rice straw into renewable starch films. International Journal of Biological Macromolecules. (146):976-986. https://doi.org/10.1016/j.ijbiomac.2019.09.222 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.ijbiomac.2019.09.222 es_ES
dc.description.upvformatpinicio 976 es_ES
dc.description.upvformatpfin 986 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.issue 146 es_ES
dc.identifier.pmid 31726128 es_ES
dc.relation.pasarela S\402586 es_ES
dc.contributor.funder Swedish Research Council Formas es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Peanparkdee, M., & Iwamoto, S. (2019). Bioactive compounds from by-products of rice cultivation and rice processing: Extraction and application in the food and pharmaceutical industries. Trends in Food Science & Technology, 86, 109-117. doi:10.1016/j.tifs.2019.02.041 es_ES
dc.description.references Karimi, E., Mehrabanjoubani, P., Keshavarzian, M., Oskoueian, E., Jaafar, H. Z., & Abdolzadeh, A. (2014). Identification and quantification of phenolic and flavonoid components in straw and seed husk of some rice varieties (Oryza sativaL.) and their antioxidant properties. Journal of the Science of Food and Agriculture, 94(11), 2324-2330. doi:10.1002/jsfa.6567 es_ES
dc.description.references Riaz, A., Lei, S., Akhtar, H. M. S., Wan, P., Chen, D., Jabbar, S., … Zeng, X. (2018). Preparation and characterization of chitosan-based antimicrobial active food packaging film incorporated with apple peel polyphenols. International Journal of Biological Macromolecules, 114, 547-555. doi:10.1016/j.ijbiomac.2018.03.126 es_ES
dc.description.references Alsaggaf, M. S., Moussa, S. H., & Tayel, A. A. (2017). Application of fungal chitosan incorporated with pomegranate peel extract as edible coating for microbiological, chemical and sensorial quality enhancement of Nile tilapia fillets. International Journal of Biological Macromolecules, 99, 499-505. doi:10.1016/j.ijbiomac.2017.03.017 es_ES
dc.description.references De Moraes Crizel, T., Haas Costa, T. M., de Oliveira Rios, A., & Hickmann Flôres, S. (2016). Valorization of food-grade industrial waste in the obtaining active biodegradable films for packaging. Industrial Crops and Products, 87, 218-228. doi:10.1016/j.indcrop.2016.04.039 es_ES
dc.description.references Mushtaq, M., Gani, A., Gani, A., Punoo, H. A., & Masoodi, F. A. (2018). Use of pomegranate peel extract incorporated zein film with improved properties for prolonged shelf life of fresh Himalayan cheese (Kalari/kradi). Innovative Food Science & Emerging Technologies, 48, 25-32. doi:10.1016/j.ifset.2018.04.020 es_ES
dc.description.references Yildirim, S., Röcker, B., Pettersen, M. K., Nilsen-Nygaard, J., Ayhan, Z., Rutkaite, R., … Coma, V. (2017). Active Packaging Applications for Food. Comprehensive Reviews in Food Science and Food Safety, 17(1), 165-199. doi:10.1111/1541-4337.12322 es_ES
dc.description.references Menzel, C., González-Martínez, C., Chiralt, A., & Vilaplana, F. (2019). Antioxidant starch films containing sunflower hull extracts. Carbohydrate Polymers, 214, 142-151. doi:10.1016/j.carbpol.2019.03.022 es_ES
dc.description.references Luchese, C. L., Uranga, J., Spada, J. C., Tessaro, I. C., & de la Caba, K. (2018). Valorisation of blueberry waste and use of compression to manufacture sustainable starch films with enhanced properties. International Journal of Biological Macromolecules, 115, 955-960. doi:10.1016/j.ijbiomac.2018.04.162 es_ES
dc.description.references Forssell, P. (2002). Oxygen permeability of amylose and amylopectin films. Carbohydrate Polymers, 47(2), 125-129. doi:10.1016/s0144-8617(01)00175-8 es_ES
dc.description.references Olsson, E., Menzel, C., Johansson, C., Andersson, R., Koch, K., & Järnström, L. (2013). The effect of pH on hydrolysis, cross-linking and barrier properties of starch barriers containing citric acid. Carbohydrate Polymers, 98(2), 1505-1513. doi:10.1016/j.carbpol.2013.07.040 es_ES
dc.description.references Menzel, C., Olsson, E., Plivelic, T. S., Andersson, R., Johansson, C., Kuktaite, R., … Koch, K. (2013). Molecular structure of citric acid cross-linked starch films. Carbohydrate Polymers, 96(1), 270-276. doi:10.1016/j.carbpol.2013.03.044 es_ES
dc.description.references Mathew, S., & Abraham, T. E. (2008). Characterisation of ferulic acid incorporated starch–chitosan blend films. Food Hydrocolloids, 22(5), 826-835. doi:10.1016/j.foodhyd.2007.03.012 es_ES
dc.description.references Vilaplana, F., Hasjim, J., & Gilbert, R. G. (2012). Amylose content in starches: Toward optimal definition and validating experimental methods. Carbohydrate Polymers, 88(1), 103-111. doi:10.1016/j.carbpol.2011.11.072 es_ES
dc.description.references Grosso, V., Farina, A., Giorgi, D., Nardi, L., Diretto, G., & Lucretti, S. (2017). A high-throughput flow cytometry system for early screening of in vitro made polyploids in Dendrobium hybrids. Plant Cell, Tissue and Organ Culture (PCTOC), 132(1), 57-70. doi:10.1007/s11240-017-1310-8 es_ES
dc.description.references Cappelli, G., Giovannini, D., Basso, A. L., Demurtas, O. C., Diretto, G., Santi, C., … Mariani, F. (2018). A Corylus avellana L. extract enhances human macrophage bactericidal response against Staphylococcus aureus by increasing the expression of anti-inflammatory and iron metabolism genes. Journal of Functional Foods, 45, 499-511. doi:10.1016/j.jff.2018.04.007 es_ES
dc.description.references Ciulu, M., Cádiz-Gurrea, M., & Segura-Carretero, A. (2018). Extraction and Analysis of Phenolic Compounds in Rice: A Review. Molecules, 23(11), 2890. doi:10.3390/molecules23112890 es_ES
dc.description.references Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30. doi:10.1016/s0023-6438(95)80008-5 es_ES
dc.description.references Houdkova, M., Rondevaldova, J., Doskocil, I., & Kokoska, L. (2017). Evaluation of antibacterial potential and toxicity of plant volatile compounds using new broth microdilution volatilization method and modified MTT assay. Fitoterapia, 118, 56-62. doi:10.1016/j.fitote.2017.02.008 es_ES
dc.description.references Vilaplana, F., & Gilbert, R. G. (2010). Two-Dimensional Size/Branch Length Distributions of a Branched Polymer. Macromolecules, 43(17), 7321-7329. doi:10.1021/ma101349t es_ES
dc.description.references Sánchez-Rangel, J. C., Benavides, J., Heredia, J. B., Cisneros-Zevallos, L., & Jacobo-Velázquez, D. A. (2013). The Folin–Ciocalteu assay revisited: improvement of its specificity for total phenolic content determination. Analytical Methods, 5(21), 5990. doi:10.1039/c3ay41125g es_ES
dc.description.references Moure, A., Cruz, J. M., Franco, D., Domı́nguez, J. M., Sineiro, J., Domı́nguez, H., … Parajó, J. C. (2001). Natural antioxidants from residual sources. Food Chemistry, 72(2), 145-171. doi:10.1016/s0308-8146(00)00223-5 es_ES
dc.description.references Liu, W.-C., Halley, P. J., & Gilbert, R. G. (2010). Mechanism of Degradation of Starch, a Highly Branched Polymer, during Extrusion. Macromolecules, 43(6), 2855-2864. doi:10.1021/ma100067x es_ES
dc.description.references Carvalho, A. J. F., Zambon, M. D., Curvelo, A. A. S., & Gandini, A. (2003). Size exclusion chromatography characterization of thermoplastic starch composites 1. Influence of plasticizer and fibre content. Polymer Degradation and Stability, 79(1), 133-138. doi:10.1016/s0141-3910(02)00265-3 es_ES
dc.description.references Castro, J. V., Dumas, C., Chiou, H., Fitzgerald, M. A., & Gilbert, R. G. (2005). Mechanistic Information from Analysis of Molecular Weight Distributions of Starch. Biomacromolecules, 6(4), 2248-2259. doi:10.1021/bm0500401 es_ES
dc.description.references Alves, V. D., Mali, S., Beléia, A., & Grossmann, M. V. E. (2007). Effect of glycerol and amylose enrichment on cassava starch film properties. Journal of Food Engineering, 78(3), 941-946. doi:10.1016/j.jfoodeng.2005.12.007 es_ES
dc.description.references Myllärinen, P., Partanen, R., Seppälä, J., & Forssell, P. (2002). Effect of glycerol on behaviour of amylose and amylopectin films. Carbohydrate Polymers, 50(4), 355-361. doi:10.1016/s0144-8617(02)00042-5 es_ES
dc.description.references Hatfield, R. D., Ralph, J., & Grabber, J. H. (1999). Cell wall cross-linking by ferulates and diferulates in grasses. Journal of the Science of Food and Agriculture, 79(3), 403-407. doi:10.1002/(sici)1097-0010(19990301)79:3<403::aid-jsfa263>3.0.co;2-0 es_ES
dc.description.references Hulleman, S. H. D., Janssen, F. H. P., & Feil, H. (1998). The role of water during plasticization of native starches. Polymer, 39(10), 2043-2048. doi:10.1016/s0032-3861(97)00301-7 es_ES
dc.description.references Arvanitoyannis, I., Psomiadou, E., & Nakayama, A. (1996). Edible films made from sodium casemate, starches, sugars or glycerol. Part 1. Carbohydrate Polymers, 31(4), 179-192. doi:10.1016/s0144-8617(96)00123-3 es_ES
dc.description.references C.T. Greenwood, The Thermal Degradation of Starch, in: M.L. Wolfrom, R.S. Tipson (Eds.), Advances in Carbohydrate Chemistry, Academic Press, 1967, pp. 483–515. es_ES
dc.description.references Chai, Y., Wang, M., & Zhang, G. (2013). Interaction between Amylose and Tea Polyphenols Modulates the Postprandial Glycemic Response to High-Amylose Maize Starch. Journal of Agricultural and Food Chemistry, 61(36), 8608-8615. doi:10.1021/jf402821r es_ES
dc.description.references Perazzo, K. K. N. C. L., Conceição, A. C. de V., Santos, J. C. P. dos, Assis, D. de J., Souza, C. O., & Druzian, J. I. (2014). Properties and Antioxidant Action of Actives Cassava Starch Films Incorporated with Green Tea and Palm Oil Extracts. PLoS ONE, 9(9), e105199. doi:10.1371/journal.pone.0105199 es_ES
dc.description.references Atarés, L., Pérez-Masiá, R., & Chiralt, A. (2011). The role of some antioxidants in the HPMC film properties and lipid protection in coated toasted almonds. Journal of Food Engineering, 104(4), 649-656. doi:10.1016/j.jfoodeng.2011.02.005 es_ES
dc.description.references Bonilla, J., Atarés, L., Vargas, M., & Chiralt, A. (2012). Edible films and coatings to prevent the detrimental effect of oxygen on food quality: Possibilities and limitations. Journal of Food Engineering, 110(2), 208-213. doi:10.1016/j.jfoodeng.2011.05.034 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem