Mostrar el registro sencillo del ítem
dc.contributor.author | Menzel, Carolin | es_ES |
dc.contributor.author | González Martínez, María Consuelo | es_ES |
dc.contributor.author | Vilaplana, Francisco | es_ES |
dc.contributor.author | Diretto, Gianfranco | es_ES |
dc.contributor.author | Chiralt Boix, Mª Amparo | es_ES |
dc.date.accessioned | 2021-02-16T04:31:54Z | |
dc.date.available | 2021-02-16T04:31:54Z | |
dc.date.issued | 2020-03-01 | es_ES |
dc.identifier.issn | 0141-8130 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161377 | |
dc.description.abstract | [EN] This study showed that rice straw waste is a valuable source for the extraction of water-soluble phenolic compounds that can be successfully incorporated into bioactive starch-based films. The major phenolic compounds in the extract were identified as ferulic, p-coumaric and protocatechuic acid using UHPLC-MS. Homogeneous films with antioxidant properties were produced by melt blending and compression molding and the changes in the physico-chemical properties were evaluated. The produced antioxidant starch films were slightly reddish-colored and exhibited good in-vitro antiradical scavenging activity against DPPH*. The addition of the antioxidant extract improved the oxygen barrier properties without negatively affecting the thermal and the water vapor barrier properties. However, antioxidant starch films turned more brittle with increasing amount of the antioxidant extract, which was probably due to interactions of phenolic compounds with the starch chains. The film forming process induced chain scission of starch molecules in all films, shown in a decrease in molecular weight of native starch from 9.1 x 10(6) Da to values as low as 1.0-3.5 x 10(6) Da. This study aids a circular economy by recycling rice straw for the production of bioactive food packaging. | es_ES |
dc.description.sponsorship | This work was supported by the Swedish Research Council Formas [2015-00550] and by the project AGL2016-76699-R from Spanish Ministerio de Educacion y Ciencia. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | International Journal of Biological Macromolecules | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Molecular weight | es_ES |
dc.subject | Antimicrobial activity | es_ES |
dc.subject | DPPH | es_ES |
dc.subject | Food packaging | es_ES |
dc.subject | Phenolic add | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Incorporation of natural antioxidants from rice straw into renewable starch films | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.ijbiomac.2019.09.222 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Swedish Research Council Formas//2015-00550/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2016-76699-R/ES/Materiales Biodegradables Multicapa de Alta Barrera para el Envasado Activo de Alimentos/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.description.bibliographicCitation | Menzel, C.; González Martínez, MC.; Vilaplana, F.; Diretto, G.; Chiralt Boix, MA. (2020). Incorporation of natural antioxidants from rice straw into renewable starch films. International Journal of Biological Macromolecules. (146):976-986. https://doi.org/10.1016/j.ijbiomac.2019.09.222 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.ijbiomac.2019.09.222 | es_ES |
dc.description.upvformatpinicio | 976 | es_ES |
dc.description.upvformatpfin | 986 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.issue | 146 | es_ES |
dc.identifier.pmid | 31726128 | es_ES |
dc.relation.pasarela | S\402586 | es_ES |
dc.contributor.funder | Swedish Research Council Formas | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Peanparkdee, M., & Iwamoto, S. (2019). Bioactive compounds from by-products of rice cultivation and rice processing: Extraction and application in the food and pharmaceutical industries. Trends in Food Science & Technology, 86, 109-117. doi:10.1016/j.tifs.2019.02.041 | es_ES |
dc.description.references | Karimi, E., Mehrabanjoubani, P., Keshavarzian, M., Oskoueian, E., Jaafar, H. Z., & Abdolzadeh, A. (2014). Identification and quantification of phenolic and flavonoid components in straw and seed husk of some rice varieties (Oryza sativaL.) and their antioxidant properties. Journal of the Science of Food and Agriculture, 94(11), 2324-2330. doi:10.1002/jsfa.6567 | es_ES |
dc.description.references | Riaz, A., Lei, S., Akhtar, H. M. S., Wan, P., Chen, D., Jabbar, S., … Zeng, X. (2018). Preparation and characterization of chitosan-based antimicrobial active food packaging film incorporated with apple peel polyphenols. International Journal of Biological Macromolecules, 114, 547-555. doi:10.1016/j.ijbiomac.2018.03.126 | es_ES |
dc.description.references | Alsaggaf, M. S., Moussa, S. H., & Tayel, A. A. (2017). Application of fungal chitosan incorporated with pomegranate peel extract as edible coating for microbiological, chemical and sensorial quality enhancement of Nile tilapia fillets. International Journal of Biological Macromolecules, 99, 499-505. doi:10.1016/j.ijbiomac.2017.03.017 | es_ES |
dc.description.references | De Moraes Crizel, T., Haas Costa, T. M., de Oliveira Rios, A., & Hickmann Flôres, S. (2016). Valorization of food-grade industrial waste in the obtaining active biodegradable films for packaging. Industrial Crops and Products, 87, 218-228. doi:10.1016/j.indcrop.2016.04.039 | es_ES |
dc.description.references | Mushtaq, M., Gani, A., Gani, A., Punoo, H. A., & Masoodi, F. A. (2018). Use of pomegranate peel extract incorporated zein film with improved properties for prolonged shelf life of fresh Himalayan cheese (Kalari/kradi). Innovative Food Science & Emerging Technologies, 48, 25-32. doi:10.1016/j.ifset.2018.04.020 | es_ES |
dc.description.references | Yildirim, S., Röcker, B., Pettersen, M. K., Nilsen-Nygaard, J., Ayhan, Z., Rutkaite, R., … Coma, V. (2017). Active Packaging Applications for Food. Comprehensive Reviews in Food Science and Food Safety, 17(1), 165-199. doi:10.1111/1541-4337.12322 | es_ES |
dc.description.references | Menzel, C., González-Martínez, C., Chiralt, A., & Vilaplana, F. (2019). Antioxidant starch films containing sunflower hull extracts. Carbohydrate Polymers, 214, 142-151. doi:10.1016/j.carbpol.2019.03.022 | es_ES |
dc.description.references | Luchese, C. L., Uranga, J., Spada, J. C., Tessaro, I. C., & de la Caba, K. (2018). Valorisation of blueberry waste and use of compression to manufacture sustainable starch films with enhanced properties. International Journal of Biological Macromolecules, 115, 955-960. doi:10.1016/j.ijbiomac.2018.04.162 | es_ES |
dc.description.references | Forssell, P. (2002). Oxygen permeability of amylose and amylopectin films. Carbohydrate Polymers, 47(2), 125-129. doi:10.1016/s0144-8617(01)00175-8 | es_ES |
dc.description.references | Olsson, E., Menzel, C., Johansson, C., Andersson, R., Koch, K., & Järnström, L. (2013). The effect of pH on hydrolysis, cross-linking and barrier properties of starch barriers containing citric acid. Carbohydrate Polymers, 98(2), 1505-1513. doi:10.1016/j.carbpol.2013.07.040 | es_ES |
dc.description.references | Menzel, C., Olsson, E., Plivelic, T. S., Andersson, R., Johansson, C., Kuktaite, R., … Koch, K. (2013). Molecular structure of citric acid cross-linked starch films. Carbohydrate Polymers, 96(1), 270-276. doi:10.1016/j.carbpol.2013.03.044 | es_ES |
dc.description.references | Mathew, S., & Abraham, T. E. (2008). Characterisation of ferulic acid incorporated starch–chitosan blend films. Food Hydrocolloids, 22(5), 826-835. doi:10.1016/j.foodhyd.2007.03.012 | es_ES |
dc.description.references | Vilaplana, F., Hasjim, J., & Gilbert, R. G. (2012). Amylose content in starches: Toward optimal definition and validating experimental methods. Carbohydrate Polymers, 88(1), 103-111. doi:10.1016/j.carbpol.2011.11.072 | es_ES |
dc.description.references | Grosso, V., Farina, A., Giorgi, D., Nardi, L., Diretto, G., & Lucretti, S. (2017). A high-throughput flow cytometry system for early screening of in vitro made polyploids in Dendrobium hybrids. Plant Cell, Tissue and Organ Culture (PCTOC), 132(1), 57-70. doi:10.1007/s11240-017-1310-8 | es_ES |
dc.description.references | Cappelli, G., Giovannini, D., Basso, A. L., Demurtas, O. C., Diretto, G., Santi, C., … Mariani, F. (2018). A Corylus avellana L. extract enhances human macrophage bactericidal response against Staphylococcus aureus by increasing the expression of anti-inflammatory and iron metabolism genes. Journal of Functional Foods, 45, 499-511. doi:10.1016/j.jff.2018.04.007 | es_ES |
dc.description.references | Ciulu, M., Cádiz-Gurrea, M., & Segura-Carretero, A. (2018). Extraction and Analysis of Phenolic Compounds in Rice: A Review. Molecules, 23(11), 2890. doi:10.3390/molecules23112890 | es_ES |
dc.description.references | Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30. doi:10.1016/s0023-6438(95)80008-5 | es_ES |
dc.description.references | Houdkova, M., Rondevaldova, J., Doskocil, I., & Kokoska, L. (2017). Evaluation of antibacterial potential and toxicity of plant volatile compounds using new broth microdilution volatilization method and modified MTT assay. Fitoterapia, 118, 56-62. doi:10.1016/j.fitote.2017.02.008 | es_ES |
dc.description.references | Vilaplana, F., & Gilbert, R. G. (2010). Two-Dimensional Size/Branch Length Distributions of a Branched Polymer. Macromolecules, 43(17), 7321-7329. doi:10.1021/ma101349t | es_ES |
dc.description.references | Sánchez-Rangel, J. C., Benavides, J., Heredia, J. B., Cisneros-Zevallos, L., & Jacobo-Velázquez, D. A. (2013). The Folin–Ciocalteu assay revisited: improvement of its specificity for total phenolic content determination. Analytical Methods, 5(21), 5990. doi:10.1039/c3ay41125g | es_ES |
dc.description.references | Moure, A., Cruz, J. M., Franco, D., Domı́nguez, J. M., Sineiro, J., Domı́nguez, H., … Parajó, J. C. (2001). Natural antioxidants from residual sources. Food Chemistry, 72(2), 145-171. doi:10.1016/s0308-8146(00)00223-5 | es_ES |
dc.description.references | Liu, W.-C., Halley, P. J., & Gilbert, R. G. (2010). Mechanism of Degradation of Starch, a Highly Branched Polymer, during Extrusion. Macromolecules, 43(6), 2855-2864. doi:10.1021/ma100067x | es_ES |
dc.description.references | Carvalho, A. J. F., Zambon, M. D., Curvelo, A. A. S., & Gandini, A. (2003). Size exclusion chromatography characterization of thermoplastic starch composites 1. Influence of plasticizer and fibre content. Polymer Degradation and Stability, 79(1), 133-138. doi:10.1016/s0141-3910(02)00265-3 | es_ES |
dc.description.references | Castro, J. V., Dumas, C., Chiou, H., Fitzgerald, M. A., & Gilbert, R. G. (2005). Mechanistic Information from Analysis of Molecular Weight Distributions of Starch. Biomacromolecules, 6(4), 2248-2259. doi:10.1021/bm0500401 | es_ES |
dc.description.references | Alves, V. D., Mali, S., Beléia, A., & Grossmann, M. V. E. (2007). Effect of glycerol and amylose enrichment on cassava starch film properties. Journal of Food Engineering, 78(3), 941-946. doi:10.1016/j.jfoodeng.2005.12.007 | es_ES |
dc.description.references | Myllärinen, P., Partanen, R., Seppälä, J., & Forssell, P. (2002). Effect of glycerol on behaviour of amylose and amylopectin films. Carbohydrate Polymers, 50(4), 355-361. doi:10.1016/s0144-8617(02)00042-5 | es_ES |
dc.description.references | Hatfield, R. D., Ralph, J., & Grabber, J. H. (1999). Cell wall cross-linking by ferulates and diferulates in grasses. Journal of the Science of Food and Agriculture, 79(3), 403-407. doi:10.1002/(sici)1097-0010(19990301)79:3<403::aid-jsfa263>3.0.co;2-0 | es_ES |
dc.description.references | Hulleman, S. H. D., Janssen, F. H. P., & Feil, H. (1998). The role of water during plasticization of native starches. Polymer, 39(10), 2043-2048. doi:10.1016/s0032-3861(97)00301-7 | es_ES |
dc.description.references | Arvanitoyannis, I., Psomiadou, E., & Nakayama, A. (1996). Edible films made from sodium casemate, starches, sugars or glycerol. Part 1. Carbohydrate Polymers, 31(4), 179-192. doi:10.1016/s0144-8617(96)00123-3 | es_ES |
dc.description.references | C.T. Greenwood, The Thermal Degradation of Starch, in: M.L. Wolfrom, R.S. Tipson (Eds.), Advances in Carbohydrate Chemistry, Academic Press, 1967, pp. 483–515. | es_ES |
dc.description.references | Chai, Y., Wang, M., & Zhang, G. (2013). Interaction between Amylose and Tea Polyphenols Modulates the Postprandial Glycemic Response to High-Amylose Maize Starch. Journal of Agricultural and Food Chemistry, 61(36), 8608-8615. doi:10.1021/jf402821r | es_ES |
dc.description.references | Perazzo, K. K. N. C. L., Conceição, A. C. de V., Santos, J. C. P. dos, Assis, D. de J., Souza, C. O., & Druzian, J. I. (2014). Properties and Antioxidant Action of Actives Cassava Starch Films Incorporated with Green Tea and Palm Oil Extracts. PLoS ONE, 9(9), e105199. doi:10.1371/journal.pone.0105199 | es_ES |
dc.description.references | Atarés, L., Pérez-Masiá, R., & Chiralt, A. (2011). The role of some antioxidants in the HPMC film properties and lipid protection in coated toasted almonds. Journal of Food Engineering, 104(4), 649-656. doi:10.1016/j.jfoodeng.2011.02.005 | es_ES |
dc.description.references | Bonilla, J., Atarés, L., Vargas, M., & Chiralt, A. (2012). Edible films and coatings to prevent the detrimental effect of oxygen on food quality: Possibilities and limitations. Journal of Food Engineering, 110(2), 208-213. doi:10.1016/j.jfoodeng.2011.05.034 | es_ES |