- -

The semi-analytical method for time-dependent wave problems with uncertainties

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The semi-analytical method for time-dependent wave problems with uncertainties

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Casabán, M.-C. es_ES
dc.contributor.author Cortés, J.-C. es_ES
dc.contributor.author Jódar Sánchez, Lucas Antonio es_ES
dc.date.accessioned 2021-02-18T04:32:26Z
dc.date.available 2021-02-18T04:32:26Z
dc.date.issued 2020 es_ES
dc.identifier.issn 0170-4214 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161704
dc.description.abstract [EN] This paper provides a constructive procedure for the computation of approximate solutions of random time-dependent hyperbolic mean square partial differential problems. Based on the theoretical representation of the solution as an infinite random improper integral, obtained via the random Fourier transform method, a double approximation process is implemented. Firstly, a random Gauss-Hermite quadrature is applied, and then, the evaluations at the nodes of the integrand are approximated by using a random Störmer numerical method. Numerical results are illustrated with examples. es_ES
dc.description.sponsorship Ministerio de Ciencia e Innovacion, Grant/Award Number: MTM2017-89664-P es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Mathematical Methods in the Applied Sciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Mean square random calculus es_ES
dc.subject Partial differential equations with randomness es_ES
dc.subject Problems involving randomness es_ES
dc.subject Random Fourier integral transform es_ES
dc.subject Random time-dependent hyperbolic problem es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title The semi-analytical method for time-dependent wave problems with uncertainties es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/mma.5813 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Casabán, M.; Cortés, J.; Jódar Sánchez, LA. (2020). The semi-analytical method for time-dependent wave problems with uncertainties. Mathematical Methods in the Applied Sciences. 43(14):7977-7992. https://doi.org/10.1002/mma.5813 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/mma.5813 es_ES
dc.description.upvformatpinicio 7977 es_ES
dc.description.upvformatpfin 7992 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 43 es_ES
dc.description.issue 14 es_ES
dc.relation.pasarela S\389578 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Khan, Y., Taghipour, R., Falahian, M., & Nikkar, A. (2012). A new approach to modified regularized long wave equation. Neural Computing and Applications, 23(5), 1335-1341. doi:10.1007/s00521-012-1077-0 es_ES
dc.description.references Lin, J., Chen, C. S., Liu, C.-S., & Lu, J. (2016). Fast simulation of multi-dimensional wave problems by the sparse scheme of the method of fundamental solutions. Computers & Mathematics with Applications, 72(3), 555-567. doi:10.1016/j.camwa.2016.05.016 es_ES
dc.description.references Lin, J. (2018). Simulation of Seismic Wave Scattering by Embedded Cavities in an Elastic Half-Plane Using the Novel Singular Boundary Method. Advances in Applied Mathematics and Mechanics, 10(2), 322-342. doi:10.4208/aamm.oa-2016-0187 es_ES
dc.description.references KachanovLM.Introduction to Continuous Damage Mechanics:Martinus Nijhoff Dordrecht;1986. es_ES
dc.description.references Sheng, D., & Axelsson, K. (1995). Uncoupling of coupled flows in soil—a finite element method. International Journal for Numerical and Analytical Methods in Geomechanics, 19(8), 537-553. doi:10.1002/nag.1610190804 es_ES
dc.description.references Yeung, A. T., & Mitchell, J. K. (1993). Coupled fluid, electrical and chemical flows in soil. Géotechnique, 43(1), 121-134. doi:10.1680/geot.1993.43.1.121 es_ES
dc.description.references Das, P. K. (1991). Optical Signal Processing. doi:10.1007/978-3-642-74962-9 es_ES
dc.description.references Dibben, D. C., & Metaxas, R. (1996). Time domain finite element analysis of multimode microwave applicators. IEEE Transactions on Magnetics, 32(3), 942-945. doi:10.1109/20.497397 es_ES
dc.description.references MetaxasAC MeredithRJ.Industrial Microwave Heating:Peter Peregrinus London;1983. es_ES
dc.description.references Bharucha‐ReidAT.On the theory of random equations. Richard Bellman Stochastic Processes in Mathematical Physics and Engineering:40–69. Proceedings of symposia in applied mathematics 0160‐7634 American Mathematical Society USA. 1964; XVI:. es_ES
dc.description.references Casabán, M.-C., Company, R., Cortés, J.-C., & Jódar, L. (2014). Solving the random diffusion model in an infinite medium: A mean square approach. Applied Mathematical Modelling, 38(24), 5922-5933. doi:10.1016/j.apm.2014.04.063 es_ES
dc.description.references Casabán, M.-C., Cortés, J.-C., & Jódar, L. (2016). Solving linear and quadratic random matrix differential equations: A mean square approach. Applied Mathematical Modelling, 40(21-22), 9362-9377. doi:10.1016/j.apm.2016.06.017 es_ES
dc.description.references Casabán, M.-C., Cortés, J.-C., & Jódar, L. (2018). Solving linear and quadratic random matrix differential equations using: A mean square approach. The non-autonomous case. Journal of Computational and Applied Mathematics, 330, 937-954. doi:10.1016/j.cam.2016.11.049 es_ES
dc.description.references Madera, A. G. (1993). Modelling of stochastic heat transfer in a solid. Applied Mathematical Modelling, 17(12), 664-668. doi:10.1016/0307-904x(93)90077-t es_ES
dc.description.references Madera, A. G., & Sotnikov, A. N. (1996). Method for analyzing stochastic heat transfer in a fluid flow. Applied Mathematical Modelling, 20(8), 588-592. doi:10.1016/0307-904x(96)00006-6 es_ES
dc.description.references Caraballo, T., Han, X., & Kloeden, P. E. (2015). Chemostats with random inputs and wall growth. Mathematical Methods in the Applied Sciences, 38(16), 3538-3550. doi:10.1002/mma.3437 es_ES
dc.description.references Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061 es_ES
dc.description.references Delves, L. M., & Mohamed, J. L. (1985). Computational Methods for Integral Equations. doi:10.1017/cbo9780511569609 es_ES
dc.description.references Cortés, J. C., Jódar, L., & Villafuerte, L. (2010). Numerical solution of random differential initial value problems: Multistep methods. Mathematical Methods in the Applied Sciences, 34(1), 63-75. doi:10.1002/mma.1331 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem