Khan, Y., Taghipour, R., Falahian, M., & Nikkar, A. (2012). A new approach to modified regularized long wave equation. Neural Computing and Applications, 23(5), 1335-1341. doi:10.1007/s00521-012-1077-0
Lin, J., Chen, C. S., Liu, C.-S., & Lu, J. (2016). Fast simulation of multi-dimensional wave problems by the sparse scheme of the method of fundamental solutions. Computers & Mathematics with Applications, 72(3), 555-567. doi:10.1016/j.camwa.2016.05.016
Lin, J. (2018). Simulation of Seismic Wave Scattering by Embedded Cavities in an Elastic Half-Plane Using the Novel Singular Boundary Method. Advances in Applied Mathematics and Mechanics, 10(2), 322-342. doi:10.4208/aamm.oa-2016-0187
[+]
Khan, Y., Taghipour, R., Falahian, M., & Nikkar, A. (2012). A new approach to modified regularized long wave equation. Neural Computing and Applications, 23(5), 1335-1341. doi:10.1007/s00521-012-1077-0
Lin, J., Chen, C. S., Liu, C.-S., & Lu, J. (2016). Fast simulation of multi-dimensional wave problems by the sparse scheme of the method of fundamental solutions. Computers & Mathematics with Applications, 72(3), 555-567. doi:10.1016/j.camwa.2016.05.016
Lin, J. (2018). Simulation of Seismic Wave Scattering by Embedded Cavities in an Elastic Half-Plane Using the Novel Singular Boundary Method. Advances in Applied Mathematics and Mechanics, 10(2), 322-342. doi:10.4208/aamm.oa-2016-0187
KachanovLM.Introduction to Continuous Damage Mechanics:Martinus Nijhoff Dordrecht;1986.
Sheng, D., & Axelsson, K. (1995). Uncoupling of coupled flows in soil—a finite element method. International Journal for Numerical and Analytical Methods in Geomechanics, 19(8), 537-553. doi:10.1002/nag.1610190804
Yeung, A. T., & Mitchell, J. K. (1993). Coupled fluid, electrical and chemical flows in soil. Géotechnique, 43(1), 121-134. doi:10.1680/geot.1993.43.1.121
Das, P. K. (1991). Optical Signal Processing. doi:10.1007/978-3-642-74962-9
Dibben, D. C., & Metaxas, R. (1996). Time domain finite element analysis of multimode microwave applicators. IEEE Transactions on Magnetics, 32(3), 942-945. doi:10.1109/20.497397
MetaxasAC MeredithRJ.Industrial Microwave Heating:Peter Peregrinus London;1983.
Bharucha‐ReidAT.On the theory of random equations. Richard Bellman Stochastic Processes in Mathematical Physics and Engineering:40–69. Proceedings of symposia in applied mathematics 0160‐7634 American Mathematical Society USA. 1964; XVI:.
Casabán, M.-C., Company, R., Cortés, J.-C., & Jódar, L. (2014). Solving the random diffusion model in an infinite medium: A mean square approach. Applied Mathematical Modelling, 38(24), 5922-5933. doi:10.1016/j.apm.2014.04.063
Casabán, M.-C., Cortés, J.-C., & Jódar, L. (2016). Solving linear and quadratic random matrix differential equations: A mean square approach. Applied Mathematical Modelling, 40(21-22), 9362-9377. doi:10.1016/j.apm.2016.06.017
Casabán, M.-C., Cortés, J.-C., & Jódar, L. (2018). Solving linear and quadratic random matrix differential equations using: A mean square approach. The non-autonomous case. Journal of Computational and Applied Mathematics, 330, 937-954. doi:10.1016/j.cam.2016.11.049
Madera, A. G. (1993). Modelling of stochastic heat transfer in a solid. Applied Mathematical Modelling, 17(12), 664-668. doi:10.1016/0307-904x(93)90077-t
Madera, A. G., & Sotnikov, A. N. (1996). Method for analyzing stochastic heat transfer in a fluid flow. Applied Mathematical Modelling, 20(8), 588-592. doi:10.1016/0307-904x(96)00006-6
Caraballo, T., Han, X., & Kloeden, P. E. (2015). Chemostats with random inputs and wall growth. Mathematical Methods in the Applied Sciences, 38(16), 3538-3550. doi:10.1002/mma.3437
Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061
Delves, L. M., & Mohamed, J. L. (1985). Computational Methods for Integral Equations. doi:10.1017/cbo9780511569609
Cortés, J. C., Jódar, L., & Villafuerte, L. (2010). Numerical solution of random differential initial value problems: Multistep methods. Mathematical Methods in the Applied Sciences, 34(1), 63-75. doi:10.1002/mma.1331
[-]