Linderman, K., Schroeder, R. G., Zaheer, S., & Choo, A. S. (2002). Six Sigma: a goal-theoretic perspective. Journal of Operations Management, 21(2), 193-203. doi:10.1016/s0272-6963(02)00087-6
Grima, P., Marco-Almagro, L., Santiago, S., & Tort-Martorell, X. (2013). Six Sigma: hints from practice to overcome difficulties. Total Quality Management & Business Excellence, 25(3-4), 198-208. doi:10.1080/14783363.2013.825101
Reis, M., & Gins, G. (2017). Industrial Process Monitoring in the Big Data/Industry 4.0 Era: from Detection, to Diagnosis, to Prognosis. Processes, 5(4), 35. doi:10.3390/pr5030035
[+]
Linderman, K., Schroeder, R. G., Zaheer, S., & Choo, A. S. (2002). Six Sigma: a goal-theoretic perspective. Journal of Operations Management, 21(2), 193-203. doi:10.1016/s0272-6963(02)00087-6
Grima, P., Marco-Almagro, L., Santiago, S., & Tort-Martorell, X. (2013). Six Sigma: hints from practice to overcome difficulties. Total Quality Management & Business Excellence, 25(3-4), 198-208. doi:10.1080/14783363.2013.825101
Reis, M., & Gins, G. (2017). Industrial Process Monitoring in the Big Data/Industry 4.0 Era: from Detection, to Diagnosis, to Prognosis. Processes, 5(4), 35. doi:10.3390/pr5030035
Ferrer, A. (2007). Multivariate Statistical Process Control Based on Principal Component Analysis (MSPC-PCA): Some Reflections and a Case Study in an Autobody Assembly Process. Quality Engineering, 19(4), 311-325. doi:10.1080/08982110701621304
Peruchi, R. S., Rotela Junior, P., Brito, T. G., Paiva, A. P., Balestrassi, P. P., & Mendes Araujo, L. M. (2020). Integrating Multivariate Statistical Analysis Into Six Sigma DMAIC Projects: A Case Study on AISI 52100 Hardened Steel Turning. IEEE Access, 8, 34246-34255. doi:10.1109/access.2020.2973172
Ismail, A., Bahri Mohamed, S., Juahir, H., Ekhwan Toriman, M., Md. Kassim, A., Md Zain, S., … Yang, C. (2018). DMAIC Six Sigma Methodology in Petroleum Hydrocarbon Oil Classification. International Journal of Engineering & Technology, 7(3.14), 98. doi:10.14419/ijet.v7i3.14.16868
Jaeckle, C. M., & Macgregor, J. F. (1998). Product design through multivariate statistical analysis of process data. AIChE Journal, 44(5), 1105-1118. doi:10.1002/aic.690440509
Höskuldsson, A. (1988). PLS regression methods. Journal of Chemometrics, 2(3), 211-228. doi:10.1002/cem.1180020306
Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109-130. doi:10.1016/s0169-7439(01)00155-1
De Mast, J., & Lokkerbol, J. (2012). An analysis of the Six Sigma DMAIC method from the perspective of problem solving. International Journal of Production Economics, 139(2), 604-614. doi:10.1016/j.ijpe.2012.05.035
Tomba, E., Facco, P., Bezzo, F., & Barolo, M. (2013). Latent variable modeling to assist the implementation of Quality-by-Design paradigms in pharmaceutical development and manufacturing: A review. International Journal of Pharmaceutics, 457(1), 283-297. doi:10.1016/j.ijpharm.2013.08.074
Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1-3), 37-52. doi:10.1016/0169-7439(87)80084-9
Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433-459. doi:10.1002/wics.101
Bro, R., & Smilde, A. K. (2014). Principal component analysis. Anal. Methods, 6(9), 2812-2831. doi:10.1039/c3ay41907j
Tomba, E., Barolo, M., & García-Muñoz, S. (2012). General Framework for Latent Variable Model Inversion for the Design and Manufacturing of New Products. Industrial & Engineering Chemistry Research, 51(39), 12886-12900. doi:10.1021/ie301214c
Kourti, T., & MacGregor, J. F. (1996). Multivariate SPC Methods for Process and Product Monitoring. Journal of Quality Technology, 28(4), 409-428. doi:10.1080/00224065.1996.11979699
Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. Analytica Chimica Acta, 185, 1-17. doi:10.1016/0003-2670(86)80028-9
Barker, M., & Rayens, W. (2003). Partial least squares for discrimination. Journal of Chemometrics, 17(3), 166-173. doi:10.1002/cem.785
Wold, S., Kettaneh-Wold, N., MacGregor, J. F., & Dunn, K. G. (2009). Batch Process Modeling and MSPC. Comprehensive Chemometrics, 163-197. doi:10.1016/b978-044452701-1.00108-3
Nomikos, P., & MacGregor, J. F. (1995). Multivariate SPC Charts for Monitoring Batch Processes. Technometrics, 37(1), 41-59. doi:10.1080/00401706.1995.10485888
Wold, S., Kettaneh, N., Fridén, H., & Holmberg, A. (1998). Modelling and diagnostics of batch processes and analogous kinetic experiments. Chemometrics and Intelligent Laboratory Systems, 44(1-2), 331-340. doi:10.1016/s0169-7439(98)00162-2
Kourti, T. (2003). Abnormal situation detection, three-way data and projection methods; robust data archiving and modeling for industrial applications. Annual Reviews in Control, 27(2), 131-139. doi:10.1016/j.arcontrol.2003.10.004
González-Martínez, J. M., de Noord, O. E., & Ferrer, A. (2014). Multisynchro: a novel approach for batch synchronization in scenarios of multiple asynchronisms. Journal of Chemometrics, 28(5), 462-475. doi:10.1002/cem.2620
Kassidas, A., MacGregor, J. F., & Taylor, P. A. (1998). Synchronization of batch trajectories using dynamic time warping. AIChE Journal, 44(4), 864-875. doi:10.1002/aic.690440412
Camacho, J., Pérez-Villegas, A., Rodríguez-Gómez, R. A., & Jiménez-Mañas, E. (2015). Multivariate Exploratory Data Analysis (MEDA) Toolbox for Matlab. Chemometrics and Intelligent Laboratory Systems, 143, 49-57. doi:10.1016/j.chemolab.2015.02.016
González-Martínez, J. M., Camacho, J., & Ferrer, A. (2018). MVBatch: A matlab toolbox for batch process modeling and monitoring. Chemometrics and Intelligent Laboratory Systems, 183, 122-133. doi:10.1016/j.chemolab.2018.11.001
[-]