- -

Multivariate Six Sigma: A Case Study in Industry 4.0

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multivariate Six Sigma: A Case Study in Industry 4.0

Mostrar el registro completo del ítem

Palací-López, D.; Borràs-Ferrís, J.; Da Silva De Oliveria, LT.; Ferrer, A. (2020). Multivariate Six Sigma: A Case Study in Industry 4.0. Processes. 8(9):1-20. https://doi.org/10.3390/pr8091119

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161851

Ficheros en el ítem

Metadatos del ítem

Título: Multivariate Six Sigma: A Case Study in Industry 4.0
Autor: Palací-López, Daniel Borràs-Ferrís, Joan da Silva de Oliveria, Larissa Thaise Ferrer, Alberto
Entidad UPV: Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Fecha difusión:
Resumen:
[EN] The complex data characteristics collected in Industry 4.0 cannot be efficiently handled by classical Six Sigma statistical toolkit based mainly in least squares techniques. This may refrain people from using Six Sigma ...[+]
Palabras clave: Six Sigma , Industry 4.0 , Multivariate data analysis , Latent variables models , PCA , PLS
Derechos de uso: Reconocimiento (by)
Fuente:
Processes. (eissn: 2227-9717 )
DOI: 10.3390/pr8091119
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/pr8091119
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-82896-C2-1-R/ES/DISEÑO, CARACTERIZACION Y AJUSTE OPTIMO DE BIOCIRCUITOS SINTETICOS PARA BIOPRODUCCION CON CONTROL DE CARGA METABOLICA/
Tipo: Artículo

References

Linderman, K., Schroeder, R. G., Zaheer, S., & Choo, A. S. (2002). Six Sigma: a goal-theoretic perspective. Journal of Operations Management, 21(2), 193-203. doi:10.1016/s0272-6963(02)00087-6

Grima, P., Marco-Almagro, L., Santiago, S., & Tort-Martorell, X. (2013). Six Sigma: hints from practice to overcome difficulties. Total Quality Management & Business Excellence, 25(3-4), 198-208. doi:10.1080/14783363.2013.825101

Reis, M., & Gins, G. (2017). Industrial Process Monitoring in the Big Data/Industry 4.0 Era: from Detection, to Diagnosis, to Prognosis. Processes, 5(4), 35. doi:10.3390/pr5030035 [+]
Linderman, K., Schroeder, R. G., Zaheer, S., & Choo, A. S. (2002). Six Sigma: a goal-theoretic perspective. Journal of Operations Management, 21(2), 193-203. doi:10.1016/s0272-6963(02)00087-6

Grima, P., Marco-Almagro, L., Santiago, S., & Tort-Martorell, X. (2013). Six Sigma: hints from practice to overcome difficulties. Total Quality Management & Business Excellence, 25(3-4), 198-208. doi:10.1080/14783363.2013.825101

Reis, M., & Gins, G. (2017). Industrial Process Monitoring in the Big Data/Industry 4.0 Era: from Detection, to Diagnosis, to Prognosis. Processes, 5(4), 35. doi:10.3390/pr5030035

Ferrer, A. (2007). Multivariate Statistical Process Control Based on Principal Component Analysis (MSPC-PCA): Some Reflections and a Case Study in an Autobody Assembly Process. Quality Engineering, 19(4), 311-325. doi:10.1080/08982110701621304

Peruchi, R. S., Rotela Junior, P., Brito, T. G., Paiva, A. P., Balestrassi, P. P., & Mendes Araujo, L. M. (2020). Integrating Multivariate Statistical Analysis Into Six Sigma DMAIC Projects: A Case Study on AISI 52100 Hardened Steel Turning. IEEE Access, 8, 34246-34255. doi:10.1109/access.2020.2973172

Ismail, A., Bahri Mohamed, S., Juahir, H., Ekhwan Toriman, M., Md. Kassim, A., Md Zain, S., … Yang, C. (2018). DMAIC Six Sigma Methodology in Petroleum Hydrocarbon Oil Classification. International Journal of Engineering & Technology, 7(3.14), 98. doi:10.14419/ijet.v7i3.14.16868

Jaeckle, C. M., & Macgregor, J. F. (1998). Product design through multivariate statistical analysis of process data. AIChE Journal, 44(5), 1105-1118. doi:10.1002/aic.690440509

Höskuldsson, A. (1988). PLS regression methods. Journal of Chemometrics, 2(3), 211-228. doi:10.1002/cem.1180020306

Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109-130. doi:10.1016/s0169-7439(01)00155-1

De Mast, J., & Lokkerbol, J. (2012). An analysis of the Six Sigma DMAIC method from the perspective of problem solving. International Journal of Production Economics, 139(2), 604-614. doi:10.1016/j.ijpe.2012.05.035

Tomba, E., Facco, P., Bezzo, F., & Barolo, M. (2013). Latent variable modeling to assist the implementation of Quality-by-Design paradigms in pharmaceutical development and manufacturing: A review. International Journal of Pharmaceutics, 457(1), 283-297. doi:10.1016/j.ijpharm.2013.08.074

Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1-3), 37-52. doi:10.1016/0169-7439(87)80084-9

Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433-459. doi:10.1002/wics.101

Bro, R., & Smilde, A. K. (2014). Principal component analysis. Anal. Methods, 6(9), 2812-2831. doi:10.1039/c3ay41907j

Tomba, E., Barolo, M., & García-Muñoz, S. (2012). General Framework for Latent Variable Model Inversion for the Design and Manufacturing of New Products. Industrial & Engineering Chemistry Research, 51(39), 12886-12900. doi:10.1021/ie301214c

Kourti, T., & MacGregor, J. F. (1996). Multivariate SPC Methods for Process and Product Monitoring. Journal of Quality Technology, 28(4), 409-428. doi:10.1080/00224065.1996.11979699

Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. Analytica Chimica Acta, 185, 1-17. doi:10.1016/0003-2670(86)80028-9

Barker, M., & Rayens, W. (2003). Partial least squares for discrimination. Journal of Chemometrics, 17(3), 166-173. doi:10.1002/cem.785

Wold, S., Kettaneh-Wold, N., MacGregor, J. F., & Dunn, K. G. (2009). Batch Process Modeling and MSPC. Comprehensive Chemometrics, 163-197. doi:10.1016/b978-044452701-1.00108-3

Nomikos, P., & MacGregor, J. F. (1995). Multivariate SPC Charts for Monitoring Batch Processes. Technometrics, 37(1), 41-59. doi:10.1080/00401706.1995.10485888

Wold, S., Kettaneh, N., Fridén, H., & Holmberg, A. (1998). Modelling and diagnostics of batch processes and analogous kinetic experiments. Chemometrics and Intelligent Laboratory Systems, 44(1-2), 331-340. doi:10.1016/s0169-7439(98)00162-2

Kourti, T. (2003). Abnormal situation detection, three-way data and projection methods; robust data archiving and modeling for industrial applications. Annual Reviews in Control, 27(2), 131-139. doi:10.1016/j.arcontrol.2003.10.004

González-Martínez, J. M., de Noord, O. E., & Ferrer, A. (2014). Multisynchro: a novel approach for batch synchronization in scenarios of multiple asynchronisms. Journal of Chemometrics, 28(5), 462-475. doi:10.1002/cem.2620

Kassidas, A., MacGregor, J. F., & Taylor, P. A. (1998). Synchronization of batch trajectories using dynamic time warping. AIChE Journal, 44(4), 864-875. doi:10.1002/aic.690440412

Camacho, J., Pérez-Villegas, A., Rodríguez-Gómez, R. A., & Jiménez-Mañas, E. (2015). Multivariate Exploratory Data Analysis (MEDA) Toolbox for Matlab. Chemometrics and Intelligent Laboratory Systems, 143, 49-57. doi:10.1016/j.chemolab.2015.02.016

González-Martínez, J. M., Camacho, J., & Ferrer, A. (2018). MVBatch: A matlab toolbox for batch process modeling and monitoring. Chemometrics and Intelligent Laboratory Systems, 183, 122-133. doi:10.1016/j.chemolab.2018.11.001

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem