Mostrar el registro sencillo del ítem
dc.contributor.author | Palací-López, Daniel | es_ES |
dc.contributor.author | Borràs-Ferrís, Joan | es_ES |
dc.contributor.author | da Silva de Oliveria, Larissa Thaise | es_ES |
dc.contributor.author | Ferrer, Alberto | es_ES |
dc.date.accessioned | 2021-02-19T04:33:48Z | |
dc.date.available | 2021-02-19T04:33:48Z | |
dc.date.issued | 2020-09 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161851 | |
dc.description.abstract | [EN] The complex data characteristics collected in Industry 4.0 cannot be efficiently handled by classical Six Sigma statistical toolkit based mainly in least squares techniques. This may refrain people from using Six Sigma in these contexts. The incorporation of latent variables-based multivariate statistical techniques such as principal component analysis and partial least squares into the Six Sigma statistical toolkit can help to overcome this problem yielding the Multivariate Six Sigma: a powerful process improvement methodology for Industry 4.0. A multivariate Six Sigma case study based on the batch production of one of the star products at a chemical plant is presented. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Processes | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Six Sigma | es_ES |
dc.subject | Industry 4.0 | es_ES |
dc.subject | Multivariate data analysis | es_ES |
dc.subject | Latent variables models | es_ES |
dc.subject | PCA | es_ES |
dc.subject | PLS | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Multivariate Six Sigma: A Case Study in Industry 4.0 | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/pr8091119 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-82896-C2-1-R/ES/DISEÑO, CARACTERIZACION Y AJUSTE OPTIMO DE BIOCIRCUITOS SINTETICOS PARA BIOPRODUCCION CON CONTROL DE CARGA METABOLICA/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.description.bibliographicCitation | Palací-López, D.; Borràs-Ferrís, J.; Da Silva De Oliveria, LT.; Ferrer, A. (2020). Multivariate Six Sigma: A Case Study in Industry 4.0. Processes. 8(9):1-20. https://doi.org/10.3390/pr8091119 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/pr8091119 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 20 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 9 | es_ES |
dc.identifier.eissn | 2227-9717 | es_ES |
dc.relation.pasarela | S\424362 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Linderman, K., Schroeder, R. G., Zaheer, S., & Choo, A. S. (2002). Six Sigma: a goal-theoretic perspective. Journal of Operations Management, 21(2), 193-203. doi:10.1016/s0272-6963(02)00087-6 | es_ES |
dc.description.references | Grima, P., Marco-Almagro, L., Santiago, S., & Tort-Martorell, X. (2013). Six Sigma: hints from practice to overcome difficulties. Total Quality Management & Business Excellence, 25(3-4), 198-208. doi:10.1080/14783363.2013.825101 | es_ES |
dc.description.references | Reis, M., & Gins, G. (2017). Industrial Process Monitoring in the Big Data/Industry 4.0 Era: from Detection, to Diagnosis, to Prognosis. Processes, 5(4), 35. doi:10.3390/pr5030035 | es_ES |
dc.description.references | Ferrer, A. (2007). Multivariate Statistical Process Control Based on Principal Component Analysis (MSPC-PCA): Some Reflections and a Case Study in an Autobody Assembly Process. Quality Engineering, 19(4), 311-325. doi:10.1080/08982110701621304 | es_ES |
dc.description.references | Peruchi, R. S., Rotela Junior, P., Brito, T. G., Paiva, A. P., Balestrassi, P. P., & Mendes Araujo, L. M. (2020). Integrating Multivariate Statistical Analysis Into Six Sigma DMAIC Projects: A Case Study on AISI 52100 Hardened Steel Turning. IEEE Access, 8, 34246-34255. doi:10.1109/access.2020.2973172 | es_ES |
dc.description.references | Ismail, A., Bahri Mohamed, S., Juahir, H., Ekhwan Toriman, M., Md. Kassim, A., Md Zain, S., … Yang, C. (2018). DMAIC Six Sigma Methodology in Petroleum Hydrocarbon Oil Classification. International Journal of Engineering & Technology, 7(3.14), 98. doi:10.14419/ijet.v7i3.14.16868 | es_ES |
dc.description.references | Jaeckle, C. M., & Macgregor, J. F. (1998). Product design through multivariate statistical analysis of process data. AIChE Journal, 44(5), 1105-1118. doi:10.1002/aic.690440509 | es_ES |
dc.description.references | Höskuldsson, A. (1988). PLS regression methods. Journal of Chemometrics, 2(3), 211-228. doi:10.1002/cem.1180020306 | es_ES |
dc.description.references | Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109-130. doi:10.1016/s0169-7439(01)00155-1 | es_ES |
dc.description.references | De Mast, J., & Lokkerbol, J. (2012). An analysis of the Six Sigma DMAIC method from the perspective of problem solving. International Journal of Production Economics, 139(2), 604-614. doi:10.1016/j.ijpe.2012.05.035 | es_ES |
dc.description.references | Tomba, E., Facco, P., Bezzo, F., & Barolo, M. (2013). Latent variable modeling to assist the implementation of Quality-by-Design paradigms in pharmaceutical development and manufacturing: A review. International Journal of Pharmaceutics, 457(1), 283-297. doi:10.1016/j.ijpharm.2013.08.074 | es_ES |
dc.description.references | Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1-3), 37-52. doi:10.1016/0169-7439(87)80084-9 | es_ES |
dc.description.references | Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433-459. doi:10.1002/wics.101 | es_ES |
dc.description.references | Bro, R., & Smilde, A. K. (2014). Principal component analysis. Anal. Methods, 6(9), 2812-2831. doi:10.1039/c3ay41907j | es_ES |
dc.description.references | Tomba, E., Barolo, M., & García-Muñoz, S. (2012). General Framework for Latent Variable Model Inversion for the Design and Manufacturing of New Products. Industrial & Engineering Chemistry Research, 51(39), 12886-12900. doi:10.1021/ie301214c | es_ES |
dc.description.references | Kourti, T., & MacGregor, J. F. (1996). Multivariate SPC Methods for Process and Product Monitoring. Journal of Quality Technology, 28(4), 409-428. doi:10.1080/00224065.1996.11979699 | es_ES |
dc.description.references | Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. Analytica Chimica Acta, 185, 1-17. doi:10.1016/0003-2670(86)80028-9 | es_ES |
dc.description.references | Barker, M., & Rayens, W. (2003). Partial least squares for discrimination. Journal of Chemometrics, 17(3), 166-173. doi:10.1002/cem.785 | es_ES |
dc.description.references | Wold, S., Kettaneh-Wold, N., MacGregor, J. F., & Dunn, K. G. (2009). Batch Process Modeling and MSPC. Comprehensive Chemometrics, 163-197. doi:10.1016/b978-044452701-1.00108-3 | es_ES |
dc.description.references | Nomikos, P., & MacGregor, J. F. (1995). Multivariate SPC Charts for Monitoring Batch Processes. Technometrics, 37(1), 41-59. doi:10.1080/00401706.1995.10485888 | es_ES |
dc.description.references | Wold, S., Kettaneh, N., Fridén, H., & Holmberg, A. (1998). Modelling and diagnostics of batch processes and analogous kinetic experiments. Chemometrics and Intelligent Laboratory Systems, 44(1-2), 331-340. doi:10.1016/s0169-7439(98)00162-2 | es_ES |
dc.description.references | Kourti, T. (2003). Abnormal situation detection, three-way data and projection methods; robust data archiving and modeling for industrial applications. Annual Reviews in Control, 27(2), 131-139. doi:10.1016/j.arcontrol.2003.10.004 | es_ES |
dc.description.references | González-Martínez, J. M., de Noord, O. E., & Ferrer, A. (2014). Multisynchro: a novel approach for batch synchronization in scenarios of multiple asynchronisms. Journal of Chemometrics, 28(5), 462-475. doi:10.1002/cem.2620 | es_ES |
dc.description.references | Kassidas, A., MacGregor, J. F., & Taylor, P. A. (1998). Synchronization of batch trajectories using dynamic time warping. AIChE Journal, 44(4), 864-875. doi:10.1002/aic.690440412 | es_ES |
dc.description.references | Camacho, J., Pérez-Villegas, A., Rodríguez-Gómez, R. A., & Jiménez-Mañas, E. (2015). Multivariate Exploratory Data Analysis (MEDA) Toolbox for Matlab. Chemometrics and Intelligent Laboratory Systems, 143, 49-57. doi:10.1016/j.chemolab.2015.02.016 | es_ES |
dc.description.references | González-Martínez, J. M., Camacho, J., & Ferrer, A. (2018). MVBatch: A matlab toolbox for batch process modeling and monitoring. Chemometrics and Intelligent Laboratory Systems, 183, 122-133. doi:10.1016/j.chemolab.2018.11.001 | es_ES |