- -

Tri-Criterion Model for Constructing Low-Carbon Mutual Fund Portfolios: A Preference-Based Multi-Objective Genetic Algorithm Approach

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Tri-Criterion Model for Constructing Low-Carbon Mutual Fund Portfolios: A Preference-Based Multi-Objective Genetic Algorithm Approach

Mostrar el registro completo del ítem

Hilario Caballero, A.; Garcia-Bernabeu, A.; Salcedo-Romero-De-Ávila, J.; Vercher, M. (2020). Tri-Criterion Model for Constructing Low-Carbon Mutual Fund Portfolios: A Preference-Based Multi-Objective Genetic Algorithm Approach. International Journal of Environmental research and Public Health. 17(17):1-15. https://doi.org/10.3390/ijerph17176324

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161873

Ficheros en el ítem

Metadatos del ítem

Título: Tri-Criterion Model for Constructing Low-Carbon Mutual Fund Portfolios: A Preference-Based Multi-Objective Genetic Algorithm Approach
Autor: Hilario Caballero, Adolfo Garcia-Bernabeu, Ana Salcedo-Romero-de-Ávila, José-Vicente Vercher, Marisa
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica
Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi
Universitat Politècnica de València. Departamento de Economía y Ciencias Sociales - Departament d'Economia i Ciències Socials
Fecha difusión:
Resumen:
[EN] Sustainable finance, which integrates environmental, social and governance criteria on financial decisions rests on the fact that money should be used for good purposes. Thus, the financial sector is also expected to ...[+]
Palabras clave: Genetic algorithms , Low-carbon economy , Multi-objective optimization , Sustainable finance , Investor's preferences
Derechos de uso: Reconocimiento (by)
Fuente:
International Journal of Environmental research and Public Health. (eissn: 1660-4601 )
DOI: 10.3390/ijerph17176324
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/ijerph17176324
Tipo: Artículo

References

Morningstar Low Carbon Designationhttps://bit.ly/2SfAFUA

Krueger, P., Sautner, Z., & Starks, L. T. (2020). The Importance of Climate Risks for Institutional Investors. The Review of Financial Studies, 33(3), 1067-1111. doi:10.1093/rfs/hhz137

Syam, S. S. (1998). A dual ascent method for the portfolio selection problem with multiple constraints and linked proposals. European Journal of Operational Research, 108(1), 196-207. doi:10.1016/s0377-2217(97)00048-9 [+]
Morningstar Low Carbon Designationhttps://bit.ly/2SfAFUA

Krueger, P., Sautner, Z., & Starks, L. T. (2020). The Importance of Climate Risks for Institutional Investors. The Review of Financial Studies, 33(3), 1067-1111. doi:10.1093/rfs/hhz137

Syam, S. S. (1998). A dual ascent method for the portfolio selection problem with multiple constraints and linked proposals. European Journal of Operational Research, 108(1), 196-207. doi:10.1016/s0377-2217(97)00048-9

Li, D., Sun, X., & Wang, J. (2006). OPTIMAL LOT SOLUTION TO CARDINALITY CONSTRAINED MEAN-VARIANCE FORMULATION FOR PORTFOLIO SELECTION. Mathematical Finance, 16(1), 83-101. doi:10.1111/j.1467-9965.2006.00262.x

Bertsimas, D., & Shioda, R. (2007). Algorithm for cardinality-constrained quadratic optimization. Computational Optimization and Applications, 43(1), 1-22. doi:10.1007/s10589-007-9126-9

Bawa, V. S. (1975). Optimal rules for ordering uncertain prospects. Journal of Financial Economics, 2(1), 95-121. doi:10.1016/0304-405x(75)90025-2

Konno, H., & Yamazaki, H. (1991). Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market. Management Science, 37(5), 519-531. doi:10.1287/mnsc.37.5.519

Rockafellar, R. T., & Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. Journal of Banking & Finance, 26(7), 1443-1471. doi:10.1016/s0378-4266(02)00271-6

Mansini, R. (2003). LP solvable models for portfolio optimization: a classification and computational comparison. IMA Journal of Management Mathematics, 14(3), 187-220. doi:10.1093/imaman/14.3.187

Hirschberger, M., Steuer, R. E., Utz, S., Wimmer, M., & Qi, Y. (2013). Computing the Nondominated Surface in Tri-Criterion Portfolio Selection. Operations Research, 61(1), 169-183. doi:10.1287/opre.1120.1140

Utz, S., Wimmer, M., Hirschberger, M., & Steuer, R. E. (2014). Tri-criterion inverse portfolio optimization with application to socially responsible mutual funds. European Journal of Operational Research, 234(2), 491-498. doi:10.1016/j.ejor.2013.07.024

Utz, S., Wimmer, M., & Steuer, R. E. (2015). Tri-criterion modeling for constructing more-sustainable mutual funds. European Journal of Operational Research, 246(1), 331-338. doi:10.1016/j.ejor.2015.04.035

Chang, T.-J., Meade, N., Beasley, J. E., & Sharaiha, Y. M. (2000). Heuristics for cardinality constrained portfolio optimisation. Computers & Operations Research, 27(13), 1271-1302. doi:10.1016/s0305-0548(99)00074-x

Maringer, D., & Kellerer, H. (2003). Optimization of cardinality constrained portfolios with a hybrid local search algorithm. OR Spectrum, 25(4), 481-495. doi:10.1007/s00291-003-0139-1

Shaw, D. X., Liu, S., & Kopman, L. (2008). Lagrangian relaxation procedure for cardinality-constrained portfolio optimization. Optimization Methods and Software, 23(3), 411-420. doi:10.1080/10556780701722542

Soleimani, H., Golmakani, H. R., & Salimi, M. H. (2009). Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm. Expert Systems with Applications, 36(3), 5058-5063. doi:10.1016/j.eswa.2008.06.007

Anagnostopoulos, K. P., & Mamanis, G. (2011). The mean–variance cardinality constrained portfolio optimization problem: An experimental evaluation of five multiobjective evolutionary algorithms. Expert Systems with Applications. doi:10.1016/j.eswa.2011.04.233

Woodside-Oriakhi, M., Lucas, C., & Beasley, J. E. (2011). Heuristic algorithms for the cardinality constrained efficient frontier. European Journal of Operational Research, 213(3), 538-550. doi:10.1016/j.ejor.2011.03.030

Meghwani, S. S., & Thakur, M. (2017). Multi-criteria algorithms for portfolio optimization under practical constraints. Swarm and Evolutionary Computation, 37, 104-125. doi:10.1016/j.swevo.2017.06.005

Liagkouras, K., & Metaxiotis, K. (2016). A new efficiently encoded multiobjective algorithm for the solution of the cardinality constrained portfolio optimization problem. Annals of Operations Research, 267(1-2), 281-319. doi:10.1007/s10479-016-2377-z

Metaxiotis, K., & Liagkouras, K. (2012). Multiobjective Evolutionary Algorithms for Portfolio Management: A comprehensive literature review. Expert Systems with Applications, 39(14), 11685-11698. doi:10.1016/j.eswa.2012.04.053

Silva, Y. L. T. V., Herthel, A. B., & Subramanian, A. (2019). A multi-objective evolutionary algorithm for a class of mean-variance portfolio selection problems. Expert Systems with Applications, 133, 225-241. doi:10.1016/j.eswa.2019.05.018

Chang, T.-J., Yang, S.-C., & Chang, K.-J. (2009). Portfolio optimization problems in different risk measures using genetic algorithm. Expert Systems with Applications, 36(7), 10529-10537. doi:10.1016/j.eswa.2009.02.062

Liagkouras, K. (2019). A new three-dimensional encoding multiobjective evolutionary algorithm with application to the portfolio optimization problem. Knowledge-Based Systems, 163, 186-203. doi:10.1016/j.knosys.2018.08.025

Kaucic, M., Moradi, M., & Mirzazadeh, M. (2019). Portfolio optimization by improved NSGA-II and SPEA 2 based on different risk measures. Financial Innovation, 5(1). doi:10.1186/s40854-019-0140-6

Babaei, S., Sepehri, M. M., & Babaei, E. (2015). Multi-objective portfolio optimization considering the dependence structure of asset returns. European Journal of Operational Research, 244(2), 525-539. doi:10.1016/j.ejor.2015.01.025

Ruiz, A. B., Saborido, R., Bermúdez, J. D., Luque, M., & Vercher, E. (2019). Preference-based evolutionary multi-objective optimization for portfolio selection: a new credibilistic model under investor preferences. Journal of Global Optimization, 76(2), 295-315. doi:10.1007/s10898-019-00782-1

Anagnostopoulos, K. P., & Mamanis, G. (2010). A portfolio optimization model with three objectives and discrete variables. Computers & Operations Research, 37(7), 1285-1297. doi:10.1016/j.cor.2009.09.009

Hu, Y., Chen, H., He, M., Sun, L., Liu, R., & Shen, H. (2019). Multi-Swarm Multi-Objective Optimizer Based on p-Optimality Criteria for Multi-Objective Portfolio Management. Mathematical Problems in Engineering, 2019, 1-22. doi:10.1155/2019/8418369

Rangel-González, J. A., Fraire, H., Solís, J. F., Cruz-Reyes, L., Gomez-Santillan, C., Rangel-Valdez, N., & Carpio-Valadez, J. M. (2020). Fuzzy Multi-objective Particle Swarm Optimization Solving the Three-Objective Portfolio Optimization Problem. International Journal of Fuzzy Systems, 22(8), 2760-2768. doi:10.1007/s40815-020-00928-4

Garcia-Bernabeu, A., Salcedo, J. V., Hilario, A., Pla-Santamaria, D., & Herrero, J. M. (2019). Computing the Mean-Variance-Sustainability Nondominated Surface by ev-MOGA. Complexity, 2019, 1-12. doi:10.1155/2019/6095712

Laumanns, M., Thiele, L., Deb, K., & Zitzler, E. (2002). Combining Convergence and Diversity in Evolutionary Multiobjective Optimization. Evolutionary Computation, 10(3), 263-282. doi:10.1162/106365602760234108

Matlab Central: ev-MOGA Multiobjective Evolutionary Algorithmhttps://bit.ly/3f2BYQM

Blasco, X., Herrero, J. M., Sanchis, J., & Martínez, M. (2008). A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization. Information Sciences, 178(20), 3908-3924. doi:10.1016/j.ins.2008.06.010

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem