- -

Tri-Criterion Model for Constructing Low-Carbon Mutual Fund Portfolios: A Preference-Based Multi-Objective Genetic Algorithm Approach

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Tri-Criterion Model for Constructing Low-Carbon Mutual Fund Portfolios: A Preference-Based Multi-Objective Genetic Algorithm Approach

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hilario Caballero, Adolfo es_ES
dc.contributor.author Garcia-Bernabeu, Ana es_ES
dc.contributor.author Salcedo-Romero-de-Ávila, José-Vicente es_ES
dc.contributor.author Vercher, Marisa es_ES
dc.date.accessioned 2021-02-19T04:34:40Z
dc.date.available 2021-02-19T04:34:40Z
dc.date.issued 2020-09 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161873
dc.description.abstract [EN] Sustainable finance, which integrates environmental, social and governance criteria on financial decisions rests on the fact that money should be used for good purposes. Thus, the financial sector is also expected to play a more important role to decarbonise the global economy. To align financial flows with a pathway towards a low-carbon economy, investors should be able to integrate into their financial decisions additional criteria beyond return and risk to manage climate risk. We propose a tri-criterion portfolio selection model to extend the classical Markowitz's mean-variance approach to include investor's preferences on the portfolio carbon risk exposure as an additional criterion. To approximate the 3D Pareto front we apply an efficient multi-objective genetic algorithm called ev-MOGA which is based on the concept of epsilon-dominance. Furthermore, we introduce a-posteriori approach to incorporate the investor's preferences into the solution process regarding their climate-change related preferences measured by the carbon risk exposure and their loss-adverse attitude. We test the performance of the proposed algorithm in a cross-section of European socially responsible investments open-end funds to assess the extent to which climate-related risk could be embedded in the portfolio according to the investor's preferences. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof International Journal of Environmental research and Public Health es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Genetic algorithms es_ES
dc.subject Low-carbon economy es_ES
dc.subject Multi-objective optimization es_ES
dc.subject Sustainable finance es_ES
dc.subject Investor's preferences es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.subject.classification ECONOMIA APLICADA es_ES
dc.title Tri-Criterion Model for Constructing Low-Carbon Mutual Fund Portfolios: A Preference-Based Multi-Objective Genetic Algorithm Approach es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ijerph17176324 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Economía y Ciencias Sociales - Departament d'Economia i Ciències Socials es_ES
dc.description.bibliographicCitation Hilario Caballero, A.; Garcia-Bernabeu, A.; Salcedo-Romero-De-Ávila, J.; Vercher, M. (2020). Tri-Criterion Model for Constructing Low-Carbon Mutual Fund Portfolios: A Preference-Based Multi-Objective Genetic Algorithm Approach. International Journal of Environmental research and Public Health. 17(17):1-15. https://doi.org/10.3390/ijerph17176324 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ijerph17176324 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 17 es_ES
dc.identifier.eissn 1660-4601 es_ES
dc.identifier.pmid 32878037 es_ES
dc.identifier.pmcid PMC7503829 es_ES
dc.relation.pasarela S\417738 es_ES
dc.description.references Morningstar Low Carbon Designationhttps://bit.ly/2SfAFUA es_ES
dc.description.references Krueger, P., Sautner, Z., & Starks, L. T. (2020). The Importance of Climate Risks for Institutional Investors. The Review of Financial Studies, 33(3), 1067-1111. doi:10.1093/rfs/hhz137 es_ES
dc.description.references Syam, S. S. (1998). A dual ascent method for the portfolio selection problem with multiple constraints and linked proposals. European Journal of Operational Research, 108(1), 196-207. doi:10.1016/s0377-2217(97)00048-9 es_ES
dc.description.references Li, D., Sun, X., & Wang, J. (2006). OPTIMAL LOT SOLUTION TO CARDINALITY CONSTRAINED MEAN-VARIANCE FORMULATION FOR PORTFOLIO SELECTION. Mathematical Finance, 16(1), 83-101. doi:10.1111/j.1467-9965.2006.00262.x es_ES
dc.description.references Bertsimas, D., & Shioda, R. (2007). Algorithm for cardinality-constrained quadratic optimization. Computational Optimization and Applications, 43(1), 1-22. doi:10.1007/s10589-007-9126-9 es_ES
dc.description.references Bawa, V. S. (1975). Optimal rules for ordering uncertain prospects. Journal of Financial Economics, 2(1), 95-121. doi:10.1016/0304-405x(75)90025-2 es_ES
dc.description.references Konno, H., & Yamazaki, H. (1991). Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market. Management Science, 37(5), 519-531. doi:10.1287/mnsc.37.5.519 es_ES
dc.description.references Rockafellar, R. T., & Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. Journal of Banking & Finance, 26(7), 1443-1471. doi:10.1016/s0378-4266(02)00271-6 es_ES
dc.description.references Mansini, R. (2003). LP solvable models for portfolio optimization: a classification and computational comparison. IMA Journal of Management Mathematics, 14(3), 187-220. doi:10.1093/imaman/14.3.187 es_ES
dc.description.references Hirschberger, M., Steuer, R. E., Utz, S., Wimmer, M., & Qi, Y. (2013). Computing the Nondominated Surface in Tri-Criterion Portfolio Selection. Operations Research, 61(1), 169-183. doi:10.1287/opre.1120.1140 es_ES
dc.description.references Utz, S., Wimmer, M., Hirschberger, M., & Steuer, R. E. (2014). Tri-criterion inverse portfolio optimization with application to socially responsible mutual funds. European Journal of Operational Research, 234(2), 491-498. doi:10.1016/j.ejor.2013.07.024 es_ES
dc.description.references Utz, S., Wimmer, M., & Steuer, R. E. (2015). Tri-criterion modeling for constructing more-sustainable mutual funds. European Journal of Operational Research, 246(1), 331-338. doi:10.1016/j.ejor.2015.04.035 es_ES
dc.description.references Chang, T.-J., Meade, N., Beasley, J. E., & Sharaiha, Y. M. (2000). Heuristics for cardinality constrained portfolio optimisation. Computers & Operations Research, 27(13), 1271-1302. doi:10.1016/s0305-0548(99)00074-x es_ES
dc.description.references Maringer, D., & Kellerer, H. (2003). Optimization of cardinality constrained portfolios with a hybrid local search algorithm. OR Spectrum, 25(4), 481-495. doi:10.1007/s00291-003-0139-1 es_ES
dc.description.references Shaw, D. X., Liu, S., & Kopman, L. (2008). Lagrangian relaxation procedure for cardinality-constrained portfolio optimization. Optimization Methods and Software, 23(3), 411-420. doi:10.1080/10556780701722542 es_ES
dc.description.references Soleimani, H., Golmakani, H. R., & Salimi, M. H. (2009). Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm. Expert Systems with Applications, 36(3), 5058-5063. doi:10.1016/j.eswa.2008.06.007 es_ES
dc.description.references Anagnostopoulos, K. P., & Mamanis, G. (2011). The mean–variance cardinality constrained portfolio optimization problem: An experimental evaluation of five multiobjective evolutionary algorithms. Expert Systems with Applications. doi:10.1016/j.eswa.2011.04.233 es_ES
dc.description.references Woodside-Oriakhi, M., Lucas, C., & Beasley, J. E. (2011). Heuristic algorithms for the cardinality constrained efficient frontier. European Journal of Operational Research, 213(3), 538-550. doi:10.1016/j.ejor.2011.03.030 es_ES
dc.description.references Meghwani, S. S., & Thakur, M. (2017). Multi-criteria algorithms for portfolio optimization under practical constraints. Swarm and Evolutionary Computation, 37, 104-125. doi:10.1016/j.swevo.2017.06.005 es_ES
dc.description.references Liagkouras, K., & Metaxiotis, K. (2016). A new efficiently encoded multiobjective algorithm for the solution of the cardinality constrained portfolio optimization problem. Annals of Operations Research, 267(1-2), 281-319. doi:10.1007/s10479-016-2377-z es_ES
dc.description.references Metaxiotis, K., & Liagkouras, K. (2012). Multiobjective Evolutionary Algorithms for Portfolio Management: A comprehensive literature review. Expert Systems with Applications, 39(14), 11685-11698. doi:10.1016/j.eswa.2012.04.053 es_ES
dc.description.references Silva, Y. L. T. V., Herthel, A. B., & Subramanian, A. (2019). A multi-objective evolutionary algorithm for a class of mean-variance portfolio selection problems. Expert Systems with Applications, 133, 225-241. doi:10.1016/j.eswa.2019.05.018 es_ES
dc.description.references Chang, T.-J., Yang, S.-C., & Chang, K.-J. (2009). Portfolio optimization problems in different risk measures using genetic algorithm. Expert Systems with Applications, 36(7), 10529-10537. doi:10.1016/j.eswa.2009.02.062 es_ES
dc.description.references Liagkouras, K. (2019). A new three-dimensional encoding multiobjective evolutionary algorithm with application to the portfolio optimization problem. Knowledge-Based Systems, 163, 186-203. doi:10.1016/j.knosys.2018.08.025 es_ES
dc.description.references Kaucic, M., Moradi, M., & Mirzazadeh, M. (2019). Portfolio optimization by improved NSGA-II and SPEA 2 based on different risk measures. Financial Innovation, 5(1). doi:10.1186/s40854-019-0140-6 es_ES
dc.description.references Babaei, S., Sepehri, M. M., & Babaei, E. (2015). Multi-objective portfolio optimization considering the dependence structure of asset returns. European Journal of Operational Research, 244(2), 525-539. doi:10.1016/j.ejor.2015.01.025 es_ES
dc.description.references Ruiz, A. B., Saborido, R., Bermúdez, J. D., Luque, M., & Vercher, E. (2019). Preference-based evolutionary multi-objective optimization for portfolio selection: a new credibilistic model under investor preferences. Journal of Global Optimization, 76(2), 295-315. doi:10.1007/s10898-019-00782-1 es_ES
dc.description.references Anagnostopoulos, K. P., & Mamanis, G. (2010). A portfolio optimization model with three objectives and discrete variables. Computers & Operations Research, 37(7), 1285-1297. doi:10.1016/j.cor.2009.09.009 es_ES
dc.description.references Hu, Y., Chen, H., He, M., Sun, L., Liu, R., & Shen, H. (2019). Multi-Swarm Multi-Objective Optimizer Based on p-Optimality Criteria for Multi-Objective Portfolio Management. Mathematical Problems in Engineering, 2019, 1-22. doi:10.1155/2019/8418369 es_ES
dc.description.references Rangel-González, J. A., Fraire, H., Solís, J. F., Cruz-Reyes, L., Gomez-Santillan, C., Rangel-Valdez, N., & Carpio-Valadez, J. M. (2020). Fuzzy Multi-objective Particle Swarm Optimization Solving the Three-Objective Portfolio Optimization Problem. International Journal of Fuzzy Systems, 22(8), 2760-2768. doi:10.1007/s40815-020-00928-4 es_ES
dc.description.references Garcia-Bernabeu, A., Salcedo, J. V., Hilario, A., Pla-Santamaria, D., & Herrero, J. M. (2019). Computing the Mean-Variance-Sustainability Nondominated Surface by ev-MOGA. Complexity, 2019, 1-12. doi:10.1155/2019/6095712 es_ES
dc.description.references Laumanns, M., Thiele, L., Deb, K., & Zitzler, E. (2002). Combining Convergence and Diversity in Evolutionary Multiobjective Optimization. Evolutionary Computation, 10(3), 263-282. doi:10.1162/106365602760234108 es_ES
dc.description.references Matlab Central: ev-MOGA Multiobjective Evolutionary Algorithmhttps://bit.ly/3f2BYQM es_ES
dc.description.references Blasco, X., Herrero, J. M., Sanchis, J., & Martínez, M. (2008). A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization. Information Sciences, 178(20), 3908-3924. doi:10.1016/j.ins.2008.06.010 es_ES
dc.subject.ods 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem