Morningstar Low Carbon Designationhttps://bit.ly/2SfAFUA
Krueger, P., Sautner, Z., & Starks, L. T. (2020). The Importance of Climate Risks for Institutional Investors. The Review of Financial Studies, 33(3), 1067-1111. doi:10.1093/rfs/hhz137
Syam, S. S. (1998). A dual ascent method for the portfolio selection problem with multiple constraints and linked proposals. European Journal of Operational Research, 108(1), 196-207. doi:10.1016/s0377-2217(97)00048-9
[+]
Morningstar Low Carbon Designationhttps://bit.ly/2SfAFUA
Krueger, P., Sautner, Z., & Starks, L. T. (2020). The Importance of Climate Risks for Institutional Investors. The Review of Financial Studies, 33(3), 1067-1111. doi:10.1093/rfs/hhz137
Syam, S. S. (1998). A dual ascent method for the portfolio selection problem with multiple constraints and linked proposals. European Journal of Operational Research, 108(1), 196-207. doi:10.1016/s0377-2217(97)00048-9
Li, D., Sun, X., & Wang, J. (2006). OPTIMAL LOT SOLUTION TO CARDINALITY CONSTRAINED MEAN-VARIANCE FORMULATION FOR PORTFOLIO SELECTION. Mathematical Finance, 16(1), 83-101. doi:10.1111/j.1467-9965.2006.00262.x
Bertsimas, D., & Shioda, R. (2007). Algorithm for cardinality-constrained quadratic optimization. Computational Optimization and Applications, 43(1), 1-22. doi:10.1007/s10589-007-9126-9
Bawa, V. S. (1975). Optimal rules for ordering uncertain prospects. Journal of Financial Economics, 2(1), 95-121. doi:10.1016/0304-405x(75)90025-2
Konno, H., & Yamazaki, H. (1991). Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market. Management Science, 37(5), 519-531. doi:10.1287/mnsc.37.5.519
Rockafellar, R. T., & Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. Journal of Banking & Finance, 26(7), 1443-1471. doi:10.1016/s0378-4266(02)00271-6
Mansini, R. (2003). LP solvable models for portfolio optimization: a classification and computational comparison. IMA Journal of Management Mathematics, 14(3), 187-220. doi:10.1093/imaman/14.3.187
Hirschberger, M., Steuer, R. E., Utz, S., Wimmer, M., & Qi, Y. (2013). Computing the Nondominated Surface in Tri-Criterion Portfolio Selection. Operations Research, 61(1), 169-183. doi:10.1287/opre.1120.1140
Utz, S., Wimmer, M., Hirschberger, M., & Steuer, R. E. (2014). Tri-criterion inverse portfolio optimization with application to socially responsible mutual funds. European Journal of Operational Research, 234(2), 491-498. doi:10.1016/j.ejor.2013.07.024
Utz, S., Wimmer, M., & Steuer, R. E. (2015). Tri-criterion modeling for constructing more-sustainable mutual funds. European Journal of Operational Research, 246(1), 331-338. doi:10.1016/j.ejor.2015.04.035
Chang, T.-J., Meade, N., Beasley, J. E., & Sharaiha, Y. M. (2000). Heuristics for cardinality constrained portfolio optimisation. Computers & Operations Research, 27(13), 1271-1302. doi:10.1016/s0305-0548(99)00074-x
Maringer, D., & Kellerer, H. (2003). Optimization of cardinality constrained portfolios with a hybrid local search algorithm. OR Spectrum, 25(4), 481-495. doi:10.1007/s00291-003-0139-1
Shaw, D. X., Liu, S., & Kopman, L. (2008). Lagrangian relaxation procedure for cardinality-constrained portfolio optimization. Optimization Methods and Software, 23(3), 411-420. doi:10.1080/10556780701722542
Soleimani, H., Golmakani, H. R., & Salimi, M. H. (2009). Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm. Expert Systems with Applications, 36(3), 5058-5063. doi:10.1016/j.eswa.2008.06.007
Anagnostopoulos, K. P., & Mamanis, G. (2011). The mean–variance cardinality constrained portfolio optimization problem: An experimental evaluation of five multiobjective evolutionary algorithms. Expert Systems with Applications. doi:10.1016/j.eswa.2011.04.233
Woodside-Oriakhi, M., Lucas, C., & Beasley, J. E. (2011). Heuristic algorithms for the cardinality constrained efficient frontier. European Journal of Operational Research, 213(3), 538-550. doi:10.1016/j.ejor.2011.03.030
Meghwani, S. S., & Thakur, M. (2017). Multi-criteria algorithms for portfolio optimization under practical constraints. Swarm and Evolutionary Computation, 37, 104-125. doi:10.1016/j.swevo.2017.06.005
Liagkouras, K., & Metaxiotis, K. (2016). A new efficiently encoded multiobjective algorithm for the solution of the cardinality constrained portfolio optimization problem. Annals of Operations Research, 267(1-2), 281-319. doi:10.1007/s10479-016-2377-z
Metaxiotis, K., & Liagkouras, K. (2012). Multiobjective Evolutionary Algorithms for Portfolio Management: A comprehensive literature review. Expert Systems with Applications, 39(14), 11685-11698. doi:10.1016/j.eswa.2012.04.053
Silva, Y. L. T. V., Herthel, A. B., & Subramanian, A. (2019). A multi-objective evolutionary algorithm for a class of mean-variance portfolio selection problems. Expert Systems with Applications, 133, 225-241. doi:10.1016/j.eswa.2019.05.018
Chang, T.-J., Yang, S.-C., & Chang, K.-J. (2009). Portfolio optimization problems in different risk measures using genetic algorithm. Expert Systems with Applications, 36(7), 10529-10537. doi:10.1016/j.eswa.2009.02.062
Liagkouras, K. (2019). A new three-dimensional encoding multiobjective evolutionary algorithm with application to the portfolio optimization problem. Knowledge-Based Systems, 163, 186-203. doi:10.1016/j.knosys.2018.08.025
Kaucic, M., Moradi, M., & Mirzazadeh, M. (2019). Portfolio optimization by improved NSGA-II and SPEA 2 based on different risk measures. Financial Innovation, 5(1). doi:10.1186/s40854-019-0140-6
Babaei, S., Sepehri, M. M., & Babaei, E. (2015). Multi-objective portfolio optimization considering the dependence structure of asset returns. European Journal of Operational Research, 244(2), 525-539. doi:10.1016/j.ejor.2015.01.025
Ruiz, A. B., Saborido, R., Bermúdez, J. D., Luque, M., & Vercher, E. (2019). Preference-based evolutionary multi-objective optimization for portfolio selection: a new credibilistic model under investor preferences. Journal of Global Optimization, 76(2), 295-315. doi:10.1007/s10898-019-00782-1
Anagnostopoulos, K. P., & Mamanis, G. (2010). A portfolio optimization model with three objectives and discrete variables. Computers & Operations Research, 37(7), 1285-1297. doi:10.1016/j.cor.2009.09.009
Hu, Y., Chen, H., He, M., Sun, L., Liu, R., & Shen, H. (2019). Multi-Swarm Multi-Objective Optimizer Based on p-Optimality Criteria for Multi-Objective Portfolio Management. Mathematical Problems in Engineering, 2019, 1-22. doi:10.1155/2019/8418369
Rangel-González, J. A., Fraire, H., Solís, J. F., Cruz-Reyes, L., Gomez-Santillan, C., Rangel-Valdez, N., & Carpio-Valadez, J. M. (2020). Fuzzy Multi-objective Particle Swarm Optimization Solving the Three-Objective Portfolio Optimization Problem. International Journal of Fuzzy Systems, 22(8), 2760-2768. doi:10.1007/s40815-020-00928-4
Garcia-Bernabeu, A., Salcedo, J. V., Hilario, A., Pla-Santamaria, D., & Herrero, J. M. (2019). Computing the Mean-Variance-Sustainability Nondominated Surface by ev-MOGA. Complexity, 2019, 1-12. doi:10.1155/2019/6095712
Laumanns, M., Thiele, L., Deb, K., & Zitzler, E. (2002). Combining Convergence and Diversity in Evolutionary Multiobjective Optimization. Evolutionary Computation, 10(3), 263-282. doi:10.1162/106365602760234108
Matlab Central: ev-MOGA Multiobjective Evolutionary Algorithmhttps://bit.ly/3f2BYQM
Blasco, X., Herrero, J. M., Sanchis, J., & Martínez, M. (2008). A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization. Information Sciences, 178(20), 3908-3924. doi:10.1016/j.ins.2008.06.010
[-]