Mostrar el registro sencillo del ítem
dc.contributor.author | Artidiello, Santiago | es_ES |
dc.contributor.author | Cordero Barbero, Alicia | es_ES |
dc.contributor.author | Torregrosa Sánchez, Juan Ramón | es_ES |
dc.contributor.author | Vassileva, María P. | es_ES |
dc.date.accessioned | 2021-02-24T04:31:16Z | |
dc.date.available | 2021-02-24T04:31:16Z | |
dc.date.issued | 2020-01 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162234 | |
dc.description.abstract | [EN] A secant-type method is designed for approximating the inverse and some generalized inverses of a complex matrix A. For a nonsingular matrix, the proposed method gives us an approximation of the inverse and, when the matrix is singular, an approximation of the Moore-Penrose inverse and Drazin inverse are obtained. The convergence and the order of convergence is presented in each case. Some numerical tests allowed us to confirm the theoretical results and to compare the performance of our method with other known ones. With these results, the iterative methods with memory appear for the first time for estimating the solution of a nonlinear matrix equations. | es_ES |
dc.description.sponsorship | This research was supported by PGC2018-095896-B-C22 (MCIU/AEI/FEDER, UE), Generalitat Valenciana PROMETEO/2016/089, and FONDOCYT 029-2018 Republica Dominicana. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Mathematics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Nonlinear matrix equation | es_ES |
dc.subject | Iterative method | es_ES |
dc.subject | Secant method | es_ES |
dc.subject | Convergence | es_ES |
dc.subject | Singular value decomposition | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Generalized inverses estimations by means of iterative methods with memory | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/math8010002 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FONDOCYT//2018-2019-1D2-140/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FONDOCYT//029-2018/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Artidiello, S.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Vassileva, MP. (2020). Generalized inverses estimations by means of iterative methods with memory. Mathematics. 8(1):1-13. https://doi.org/10.3390/math8010002 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/math8010002 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 2227-7390 | es_ES |
dc.relation.pasarela | S\423836 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |
dc.contributor.funder | Fondo Nacional de Innovación y Desarrollo Científico y Tecnológico, República Dominicana | es_ES |
dc.description.references | Li, X., & Wei, Y. (2004). Iterative methods for the Drazin inverse of a matrix with a complex spectrum. Applied Mathematics and Computation, 147(3), 855-862. doi:10.1016/s0096-3003(02)00817-2 | es_ES |
dc.description.references | Li, H.-B., Huang, T.-Z., Zhang, Y., Liu, X.-P., & Gu, T.-X. (2011). Chebyshev-type methods and preconditioning techniques. Applied Mathematics and Computation, 218(2), 260-270. doi:10.1016/j.amc.2011.05.036 | es_ES |
dc.description.references | Soleymani, F., & Stanimirović, P. S. (2013). A Higher Order Iterative Method for Computing the Drazin Inverse. The Scientific World Journal, 2013, 1-11. doi:10.1155/2013/708647 | es_ES |
dc.description.references | Weiguo, L., Juan, L., & Tiantian, Q. (2013). A family of iterative methods for computing Moore–Penrose inverse of a matrix. Linear Algebra and its Applications, 438(1), 47-56. doi:10.1016/j.laa.2012.08.004 | es_ES |
dc.description.references | Soleymani, F., Salmani, H., & Rasouli, M. (2014). Finding the Moore–Penrose inverse by a new matrix iteration. Journal of Applied Mathematics and Computing, 47(1-2), 33-48. doi:10.1007/s12190-014-0759-4 | es_ES |
dc.description.references | Gu, X.-M., Huang, T.-Z., Ji, C.-C., Carpentieri, B., & Alikhanov, A. A. (2017). Fast Iterative Method with a Second-Order Implicit Difference Scheme for Time-Space Fractional Convection–Diffusion Equation. Journal of Scientific Computing, 72(3), 957-985. doi:10.1007/s10915-017-0388-9 | es_ES |
dc.description.references | Li, M., Gu, X.-M., Huang, C., Fei, M., & Zhang, G. (2018). A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations. Journal of Computational Physics, 358, 256-282. doi:10.1016/j.jcp.2017.12.044 | es_ES |
dc.description.references | Schulz, G. (1933). Iterative Berechung der reziproken Matrix. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 13(1), 57-59. doi:10.1002/zamm.19330130111 | es_ES |
dc.description.references | Li, W., & Li, Z. (2010). A family of iterative methods for computing the approximate inverse of a square matrix and inner inverse of a non-square matrix. Applied Mathematics and Computation, 215(9), 3433-3442. doi:10.1016/j.amc.2009.10.038 | es_ES |
dc.description.references | Chen, H., & Wang, Y. (2011). A Family of higher-order convergent iterative methods for computing the Moore–Penrose inverse. Applied Mathematics and Computation, 218(8), 4012-4016. doi:10.1016/j.amc.2011.05.066 | es_ES |
dc.description.references | Monsalve, M., & Raydan, M. (2011). A Secant Method for Nonlinear Matrix Problems. Numerical Linear Algebra in Signals, Systems and Control, 387-402. doi:10.1007/978-94-007-0602-6_18 | es_ES |
dc.description.references | Jay, L. O. (2001). Bit Numerical Mathematics, 41(2), 422-429. doi:10.1023/a:1021902825707 | es_ES |
dc.description.references | Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062 | es_ES |