- -

Generalized inverses estimations by means of iterative methods with memory

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Generalized inverses estimations by means of iterative methods with memory

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Artidiello, Santiago es_ES
dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.contributor.author Vassileva, María P. es_ES
dc.date.accessioned 2021-02-24T04:31:16Z
dc.date.available 2021-02-24T04:31:16Z
dc.date.issued 2020-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162234
dc.description.abstract [EN] A secant-type method is designed for approximating the inverse and some generalized inverses of a complex matrix A. For a nonsingular matrix, the proposed method gives us an approximation of the inverse and, when the matrix is singular, an approximation of the Moore-Penrose inverse and Drazin inverse are obtained. The convergence and the order of convergence is presented in each case. Some numerical tests allowed us to confirm the theoretical results and to compare the performance of our method with other known ones. With these results, the iterative methods with memory appear for the first time for estimating the solution of a nonlinear matrix equations. es_ES
dc.description.sponsorship This research was supported by PGC2018-095896-B-C22 (MCIU/AEI/FEDER, UE), Generalitat Valenciana PROMETEO/2016/089, and FONDOCYT 029-2018 Republica Dominicana. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Mathematics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Nonlinear matrix equation es_ES
dc.subject Iterative method es_ES
dc.subject Secant method es_ES
dc.subject Convergence es_ES
dc.subject Singular value decomposition es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Generalized inverses estimations by means of iterative methods with memory es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/math8010002 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FONDOCYT//2018-2019-1D2-140/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FONDOCYT//029-2018/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Artidiello, S.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Vassileva, MP. (2020). Generalized inverses estimations by means of iterative methods with memory. Mathematics. 8(1):1-13. https://doi.org/10.3390/math8010002 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/math8010002 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2227-7390 es_ES
dc.relation.pasarela S\423836 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.contributor.funder Fondo Nacional de Innovación y Desarrollo Científico y Tecnológico, República Dominicana es_ES
dc.description.references Li, X., & Wei, Y. (2004). Iterative methods for the Drazin inverse of a matrix with a complex spectrum. Applied Mathematics and Computation, 147(3), 855-862. doi:10.1016/s0096-3003(02)00817-2 es_ES
dc.description.references Li, H.-B., Huang, T.-Z., Zhang, Y., Liu, X.-P., & Gu, T.-X. (2011). Chebyshev-type methods and preconditioning techniques. Applied Mathematics and Computation, 218(2), 260-270. doi:10.1016/j.amc.2011.05.036 es_ES
dc.description.references Soleymani, F., & Stanimirović, P. S. (2013). A Higher Order Iterative Method for Computing the Drazin Inverse. The Scientific World Journal, 2013, 1-11. doi:10.1155/2013/708647 es_ES
dc.description.references Weiguo, L., Juan, L., & Tiantian, Q. (2013). A family of iterative methods for computing Moore–Penrose inverse of a matrix. Linear Algebra and its Applications, 438(1), 47-56. doi:10.1016/j.laa.2012.08.004 es_ES
dc.description.references Soleymani, F., Salmani, H., & Rasouli, M. (2014). Finding the Moore–Penrose inverse by a new matrix iteration. Journal of Applied Mathematics and Computing, 47(1-2), 33-48. doi:10.1007/s12190-014-0759-4 es_ES
dc.description.references Gu, X.-M., Huang, T.-Z., Ji, C.-C., Carpentieri, B., & Alikhanov, A. A. (2017). Fast Iterative Method with a Second-Order Implicit Difference Scheme for Time-Space Fractional Convection–Diffusion Equation. Journal of Scientific Computing, 72(3), 957-985. doi:10.1007/s10915-017-0388-9 es_ES
dc.description.references Li, M., Gu, X.-M., Huang, C., Fei, M., & Zhang, G. (2018). A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations. Journal of Computational Physics, 358, 256-282. doi:10.1016/j.jcp.2017.12.044 es_ES
dc.description.references Schulz, G. (1933). Iterative Berechung der reziproken Matrix. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 13(1), 57-59. doi:10.1002/zamm.19330130111 es_ES
dc.description.references Li, W., & Li, Z. (2010). A family of iterative methods for computing the approximate inverse of a square matrix and inner inverse of a non-square matrix. Applied Mathematics and Computation, 215(9), 3433-3442. doi:10.1016/j.amc.2009.10.038 es_ES
dc.description.references Chen, H., & Wang, Y. (2011). A Family of higher-order convergent iterative methods for computing the Moore–Penrose inverse. Applied Mathematics and Computation, 218(8), 4012-4016. doi:10.1016/j.amc.2011.05.066 es_ES
dc.description.references Monsalve, M., & Raydan, M. (2011). A Secant Method for Nonlinear Matrix Problems. Numerical Linear Algebra in Signals, Systems and Control, 387-402. doi:10.1007/978-94-007-0602-6_18 es_ES
dc.description.references Jay, L. O. (2001). Bit Numerical Mathematics, 41(2), 422-429. doi:10.1023/a:1021902825707 es_ES
dc.description.references Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem