- -

Generalized inverses estimations by means of iterative methods with memory

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Generalized inverses estimations by means of iterative methods with memory

Mostrar el registro completo del ítem

Artidiello, S.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Vassileva, MP. (2020). Generalized inverses estimations by means of iterative methods with memory. Mathematics. 8(1):1-13. https://doi.org/10.3390/math8010002

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162234

Ficheros en el ítem

Metadatos del ítem

Título: Generalized inverses estimations by means of iterative methods with memory
Autor: Artidiello, Santiago Cordero Barbero, Alicia Torregrosa Sánchez, Juan Ramón Vassileva, María P.
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] A secant-type method is designed for approximating the inverse and some generalized inverses of a complex matrix A. For a nonsingular matrix, the proposed method gives us an approximation of the inverse and, when the ...[+]
Palabras clave: Nonlinear matrix equation , Iterative method , Secant method , Convergence , Singular value decomposition
Derechos de uso: Reconocimiento (by)
Fuente:
Mathematics. (eissn: 2227-7390 )
DOI: 10.3390/math8010002
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/math8010002
Código del Proyecto:
info:eu-repo/grantAgreement/FONDOCYT//2018-2019-1D2-140/
info:eu-repo/grantAgreement/FONDOCYT//029-2018/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/
Agradecimientos:
This research was supported by PGC2018-095896-B-C22 (MCIU/AEI/FEDER, UE), Generalitat Valenciana PROMETEO/2016/089, and FONDOCYT 029-2018 Republica Dominicana.
Tipo: Artículo

References

Li, X., & Wei, Y. (2004). Iterative methods for the Drazin inverse of a matrix with a complex spectrum. Applied Mathematics and Computation, 147(3), 855-862. doi:10.1016/s0096-3003(02)00817-2

Li, H.-B., Huang, T.-Z., Zhang, Y., Liu, X.-P., & Gu, T.-X. (2011). Chebyshev-type methods and preconditioning techniques. Applied Mathematics and Computation, 218(2), 260-270. doi:10.1016/j.amc.2011.05.036

Soleymani, F., & Stanimirović, P. S. (2013). A Higher Order Iterative Method for Computing the Drazin Inverse. The Scientific World Journal, 2013, 1-11. doi:10.1155/2013/708647 [+]
Li, X., & Wei, Y. (2004). Iterative methods for the Drazin inverse of a matrix with a complex spectrum. Applied Mathematics and Computation, 147(3), 855-862. doi:10.1016/s0096-3003(02)00817-2

Li, H.-B., Huang, T.-Z., Zhang, Y., Liu, X.-P., & Gu, T.-X. (2011). Chebyshev-type methods and preconditioning techniques. Applied Mathematics and Computation, 218(2), 260-270. doi:10.1016/j.amc.2011.05.036

Soleymani, F., & Stanimirović, P. S. (2013). A Higher Order Iterative Method for Computing the Drazin Inverse. The Scientific World Journal, 2013, 1-11. doi:10.1155/2013/708647

Weiguo, L., Juan, L., & Tiantian, Q. (2013). A family of iterative methods for computing Moore–Penrose inverse of a matrix. Linear Algebra and its Applications, 438(1), 47-56. doi:10.1016/j.laa.2012.08.004

Soleymani, F., Salmani, H., & Rasouli, M. (2014). Finding the Moore–Penrose inverse by a new matrix iteration. Journal of Applied Mathematics and Computing, 47(1-2), 33-48. doi:10.1007/s12190-014-0759-4

Gu, X.-M., Huang, T.-Z., Ji, C.-C., Carpentieri, B., & Alikhanov, A. A. (2017). Fast Iterative Method with a Second-Order Implicit Difference Scheme for Time-Space Fractional Convection–Diffusion Equation. Journal of Scientific Computing, 72(3), 957-985. doi:10.1007/s10915-017-0388-9

Li, M., Gu, X.-M., Huang, C., Fei, M., & Zhang, G. (2018). A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations. Journal of Computational Physics, 358, 256-282. doi:10.1016/j.jcp.2017.12.044

Schulz, G. (1933). Iterative Berechung der reziproken Matrix. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 13(1), 57-59. doi:10.1002/zamm.19330130111

Li, W., & Li, Z. (2010). A family of iterative methods for computing the approximate inverse of a square matrix and inner inverse of a non-square matrix. Applied Mathematics and Computation, 215(9), 3433-3442. doi:10.1016/j.amc.2009.10.038

Chen, H., & Wang, Y. (2011). A Family of higher-order convergent iterative methods for computing the Moore–Penrose inverse. Applied Mathematics and Computation, 218(8), 4012-4016. doi:10.1016/j.amc.2011.05.066

Monsalve, M., & Raydan, M. (2011). A Secant Method for Nonlinear Matrix Problems. Numerical Linear Algebra in Signals, Systems and Control, 387-402. doi:10.1007/978-94-007-0602-6_18

Jay, L. O. (2001). Bit Numerical Mathematics, 41(2), 422-429. doi:10.1023/a:1021902825707

Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem