Li, X., & Wei, Y. (2004). Iterative methods for the Drazin inverse of a matrix with a complex spectrum. Applied Mathematics and Computation, 147(3), 855-862. doi:10.1016/s0096-3003(02)00817-2
Li, H.-B., Huang, T.-Z., Zhang, Y., Liu, X.-P., & Gu, T.-X. (2011). Chebyshev-type methods and preconditioning techniques. Applied Mathematics and Computation, 218(2), 260-270. doi:10.1016/j.amc.2011.05.036
Soleymani, F., & Stanimirović, P. S. (2013). A Higher Order Iterative Method for Computing the Drazin Inverse. The Scientific World Journal, 2013, 1-11. doi:10.1155/2013/708647
[+]
Li, X., & Wei, Y. (2004). Iterative methods for the Drazin inverse of a matrix with a complex spectrum. Applied Mathematics and Computation, 147(3), 855-862. doi:10.1016/s0096-3003(02)00817-2
Li, H.-B., Huang, T.-Z., Zhang, Y., Liu, X.-P., & Gu, T.-X. (2011). Chebyshev-type methods and preconditioning techniques. Applied Mathematics and Computation, 218(2), 260-270. doi:10.1016/j.amc.2011.05.036
Soleymani, F., & Stanimirović, P. S. (2013). A Higher Order Iterative Method for Computing the Drazin Inverse. The Scientific World Journal, 2013, 1-11. doi:10.1155/2013/708647
Weiguo, L., Juan, L., & Tiantian, Q. (2013). A family of iterative methods for computing Moore–Penrose inverse of a matrix. Linear Algebra and its Applications, 438(1), 47-56. doi:10.1016/j.laa.2012.08.004
Soleymani, F., Salmani, H., & Rasouli, M. (2014). Finding the Moore–Penrose inverse by a new matrix iteration. Journal of Applied Mathematics and Computing, 47(1-2), 33-48. doi:10.1007/s12190-014-0759-4
Gu, X.-M., Huang, T.-Z., Ji, C.-C., Carpentieri, B., & Alikhanov, A. A. (2017). Fast Iterative Method with a Second-Order Implicit Difference Scheme for Time-Space Fractional Convection–Diffusion Equation. Journal of Scientific Computing, 72(3), 957-985. doi:10.1007/s10915-017-0388-9
Li, M., Gu, X.-M., Huang, C., Fei, M., & Zhang, G. (2018). A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations. Journal of Computational Physics, 358, 256-282. doi:10.1016/j.jcp.2017.12.044
Schulz, G. (1933). Iterative Berechung der reziproken Matrix. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 13(1), 57-59. doi:10.1002/zamm.19330130111
Li, W., & Li, Z. (2010). A family of iterative methods for computing the approximate inverse of a square matrix and inner inverse of a non-square matrix. Applied Mathematics and Computation, 215(9), 3433-3442. doi:10.1016/j.amc.2009.10.038
Chen, H., & Wang, Y. (2011). A Family of higher-order convergent iterative methods for computing the Moore–Penrose inverse. Applied Mathematics and Computation, 218(8), 4012-4016. doi:10.1016/j.amc.2011.05.066
Monsalve, M., & Raydan, M. (2011). A Secant Method for Nonlinear Matrix Problems. Numerical Linear Algebra in Signals, Systems and Control, 387-402. doi:10.1007/978-94-007-0602-6_18
Jay, L. O. (2001). Bit Numerical Mathematics, 41(2), 422-429. doi:10.1023/a:1021902825707
Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062
[-]