Mathai, A. M., & Haubold, H. J. (2017). Fractional and Multivariable Calculus. Springer Optimization and Its Applications. doi:10.1007/978-3-319-59993-9
Altaf Khan, M., Ullah, S., & Farhan, M. (2019). The dynamics of Zika virus with Caputo fractional derivative. AIMS Mathematics, 4(1), 134-146. doi:10.3934/math.2019.1.134
Akgül, A., Cordero, A., & Torregrosa, J. R. (2019). A fractional Newton method with 2αth-order of convergence and its stability. Applied Mathematics Letters, 98, 344-351. doi:10.1016/j.aml.2019.06.028
[+]
Mathai, A. M., & Haubold, H. J. (2017). Fractional and Multivariable Calculus. Springer Optimization and Its Applications. doi:10.1007/978-3-319-59993-9
Altaf Khan, M., Ullah, S., & Farhan, M. (2019). The dynamics of Zika virus with Caputo fractional derivative. AIMS Mathematics, 4(1), 134-146. doi:10.3934/math.2019.1.134
Akgül, A., Cordero, A., & Torregrosa, J. R. (2019). A fractional Newton method with 2αth-order of convergence and its stability. Applied Mathematics Letters, 98, 344-351. doi:10.1016/j.aml.2019.06.028
Cordero, A., Girona, I., & Torregrosa, J. R. (2019). A Variant of Chebyshev’s Method with 3αth-Order of Convergence by Using Fractional Derivatives. Symmetry, 11(8), 1017. doi:10.3390/sym11081017
Odibat, Z. M., & Shawagfeh, N. T. (2007). Generalized Taylor’s formula. Applied Mathematics and Computation, 186(1), 286-293. doi:10.1016/j.amc.2006.07.102
Trujillo, J. J., Rivero, M., & Bonilla, B. (1999). On a Riemann–Liouville Generalized Taylor’s Formula. Journal of Mathematical Analysis and Applications, 231(1), 255-265. doi:10.1006/jmaa.1998.6224
Jumarie, G. (2006). Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Computers & Mathematics with Applications, 51(9-10), 1367-1376. doi:10.1016/j.camwa.2006.02.001
Lanczos, C. (1964). A Precision Approximation of the Gamma Function. Journal of the Society for Industrial and Applied Mathematics Series B Numerical Analysis, 1(1), 86-96. doi:10.1137/0701008
Magreñán, Á. A. (2014). A new tool to study real dynamics: The convergence plane. Applied Mathematics and Computation, 248, 215-224. doi:10.1016/j.amc.2014.09.061
[-]