Mostrar el registro sencillo del ítem
dc.contributor.author | Candelario, Giro | es_ES |
dc.contributor.author | Cordero Barbero, Alicia | es_ES |
dc.contributor.author | Torregrosa Sánchez, Juan Ramón | es_ES |
dc.date.accessioned | 2021-02-24T04:31:37Z | |
dc.date.available | 2021-02-24T04:31:37Z | |
dc.date.issued | 2020-03 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162239 | |
dc.description.abstract | [EN] In the recent literature, some fractional one-point Newton-type methods have been proposed in order to find roots of nonlinear equations using fractional derivatives. In this paper, we introduce a new fractional Newton-type method with order of convergence ¿ + 1 and compare it with the existing fractional Newton method with order 2¿. Moreover, we also introduce a multipoint fractional Traub-type method with order 2¿ + 1 and compare its performance with that of its first step. Some numerical tests and analysis of the dependence on the initial estimations are made for each case, including a comparison with classical Newton (¿ = 1 of the first step of the class) and classical Traub¿s scheme (¿ = 1 of fractional proposed multipoint method). In this comparison, some cases are found where classical Newton and Traub¿s methods do not converge and the proposed methods do, among other advantages. | es_ES |
dc.description.sponsorship | This research was supported by PGC2018-095896-B-C22 (MCIU/AEI/FEDER, UE) and FONDOCYT 029-2018 Republica Dominicana. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Mathematics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Nonlinear equations | es_ES |
dc.subject | Fractional derivatives | es_ES |
dc.subject | Multistep methods | es_ES |
dc.subject | Convergence | es_ES |
dc.subject | Stability | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Multipoint fraccional iterative methods with (2a+1)th-order of convergence for solving nonlinear problems | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/math8030452 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FONDOCYT//029-2018/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Candelario, G.; Cordero Barbero, A.; Torregrosa Sánchez, JR. (2020). Multipoint fraccional iterative methods with (2a+1)th-order of convergence for solving nonlinear problems. Mathematics. 8(3):1-15. https://doi.org/10.3390/math8030452 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/math8030452 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.eissn | 2227-7390 | es_ES |
dc.relation.pasarela | S\423817 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |
dc.contributor.funder | Fondo Nacional de Innovación y Desarrollo Científico y Tecnológico, República Dominicana | es_ES |
dc.description.references | Mathai, A. M., & Haubold, H. J. (2017). Fractional and Multivariable Calculus. Springer Optimization and Its Applications. doi:10.1007/978-3-319-59993-9 | es_ES |
dc.description.references | Altaf Khan, M., Ullah, S., & Farhan, M. (2019). The dynamics of Zika virus with Caputo fractional derivative. AIMS Mathematics, 4(1), 134-146. doi:10.3934/math.2019.1.134 | es_ES |
dc.description.references | Akgül, A., Cordero, A., & Torregrosa, J. R. (2019). A fractional Newton method with 2αth-order of convergence and its stability. Applied Mathematics Letters, 98, 344-351. doi:10.1016/j.aml.2019.06.028 | es_ES |
dc.description.references | Cordero, A., Girona, I., & Torregrosa, J. R. (2019). A Variant of Chebyshev’s Method with 3αth-Order of Convergence by Using Fractional Derivatives. Symmetry, 11(8), 1017. doi:10.3390/sym11081017 | es_ES |
dc.description.references | Odibat, Z. M., & Shawagfeh, N. T. (2007). Generalized Taylor’s formula. Applied Mathematics and Computation, 186(1), 286-293. doi:10.1016/j.amc.2006.07.102 | es_ES |
dc.description.references | Trujillo, J. J., Rivero, M., & Bonilla, B. (1999). On a Riemann–Liouville Generalized Taylor’s Formula. Journal of Mathematical Analysis and Applications, 231(1), 255-265. doi:10.1006/jmaa.1998.6224 | es_ES |
dc.description.references | Jumarie, G. (2006). Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Computers & Mathematics with Applications, 51(9-10), 1367-1376. doi:10.1016/j.camwa.2006.02.001 | es_ES |
dc.description.references | Lanczos, C. (1964). A Precision Approximation of the Gamma Function. Journal of the Society for Industrial and Applied Mathematics Series B Numerical Analysis, 1(1), 86-96. doi:10.1137/0701008 | es_ES |
dc.description.references | Magreñán, Á. A. (2014). A new tool to study real dynamics: The convergence plane. Applied Mathematics and Computation, 248, 215-224. doi:10.1016/j.amc.2014.09.061 | es_ES |