Argyros, I. K. (1988). On a class of nonlinear integral equations arising in neutron transport. Aequationes Mathematicae, 36(1), 99-111. doi:10.1007/bf01837974
Bruns, D. D., & Bailey, J. E. (1977). Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state. Chemical Engineering Science, 32(3), 257-264. doi:10.1016/0009-2509(77)80203-0
GANESH, M., & JOSHI, M. C. (1991). Numerical Solvability of Hammerstein Integral Equations of Mixed Type. IMA Journal of Numerical Analysis, 11(1), 21-31. doi:10.1093/imanum/11.1.21
[+]
Argyros, I. K. (1988). On a class of nonlinear integral equations arising in neutron transport. Aequationes Mathematicae, 36(1), 99-111. doi:10.1007/bf01837974
Bruns, D. D., & Bailey, J. E. (1977). Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state. Chemical Engineering Science, 32(3), 257-264. doi:10.1016/0009-2509(77)80203-0
GANESH, M., & JOSHI, M. C. (1991). Numerical Solvability of Hammerstein Integral Equations of Mixed Type. IMA Journal of Numerical Analysis, 11(1), 21-31. doi:10.1093/imanum/11.1.21
Anderson, B. D. O., & Kailath, T. (1971). Some Integral Equations with Nonsymmetric Separable Kernels. SIAM Journal on Applied Mathematics, 20(4), 659-669. doi:10.1137/0120065
Ezquerro, J. A., & Hernández, M. A. (2004). A modification of the convergence conditions for Picard’s iteration. Computational & Applied Mathematics, 23(1). doi:10.1590/s0101-82052004000100003
Amat, S., Ezquerro, J. A., & Hernández-Verón, M. A. (2013). Approximation of inverse operators by a new family of high-order iterative methods. Numerical Linear Algebra with Applications, 21(5), 629-644. doi:10.1002/nla.1917
Barikbin, M. S., Vahidi, A. R., Damercheli, T., & Babolian, E. (2020). An iterative shifted Chebyshev method for nonlinear stochastic Itô–Volterra integral equations. Journal of Computational and Applied Mathematics, 378, 112912. doi:10.1016/j.cam.2020.112912
Rabbani, M., Das, A., Hazarika, B., & Arab, R. (2020). Existence of solution for two dimensional nonlinear fractional integral equation by measure of noncompactness and iterative algorithm to solve it. Journal of Computational and Applied Mathematics, 370, 112654. doi:10.1016/j.cam.2019.112654
[-]