- -

On-line monitoring of photosynthetic activity based on pH data to assess microalgae cultivation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On-line monitoring of photosynthetic activity based on pH data to assess microalgae cultivation

Mostrar el registro completo del ítem

Gonzalez-Camejo, J.; Robles Martínez, Á.; Seco, A.; Ferrer, J.; Ruano, MV. (2020). On-line monitoring of photosynthetic activity based on pH data to assess microalgae cultivation. Journal of Environmental Management. 276:1-8. https://doi.org/10.1016/j.jenvman.2020.111343

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162577

Ficheros en el ítem

Metadatos del ítem

Título: On-line monitoring of photosynthetic activity based on pH data to assess microalgae cultivation
Autor: Gonzalez-Camejo, Josue Robles Martínez, Ángel Seco, A. Ferrer, J. Ruano, M. V.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
[EN] Microalgae performance of outdoor cultivation systems is influenced by environmental and operating dynamics. Monitoring and control systems are needed to maximise biomass productivity and nutrient recovery. The goal ...[+]
Palabras clave: Control microalgae cultivation , On-line monitoring
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Journal of Environmental Management. (issn: 0301-4797 )
DOI: 10.1016/j.jenvman.2020.111343
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.jenvman.2020.111343
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-1-R/ES/OBTENCION DE BIONUTRIENTES Y ENERGIA DEL AGUA RESIDUAL URBANA MEDIANTE CULTIVO DE MICROALGAS, TRATAMIENTOS ANAEROBIOS, CRISTALIZACION DE FOSFORO, ABSORCION DE NH3 Y COMPOSTAJE/
info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-2-R/ES/DESARROLLO DE UN SISTEMA DE CONTROL Y DE SOPORTE A LA DECISION PARA LA OBTENCION DE BIONUTRIENTES Y ENERGIA EN PROCESOS DE TRATAMIENTO DE AGUAS RESIDUALES URBANAS/
info:eu-repo/grantAgreement/MECD//FPU2014-05082/ES/FPU2014-05082/
Agradecimientos:
Authors would like to acknowledge the Ministry of Economy and Competitiveness (Spain) for their support in Projects CTM2014-54980C2-1-R and CTM2014-54980-C2-2-R, together with the European Regional Development Fund. The ...[+]
Tipo: Artículo

References

Abu‐Ghosh, S., Dubinsky, Z., & Iluz, D. (2020). Acclimation of thermotolerant algae to light and temperature interaction1. Journal of Phycology, 56(3), 662-670. doi:10.1111/jpy.12964

Arbib, Z., de Godos, I., Ruiz, J., & Perales, J. A. (2017). Optimization of pilot high rate algal ponds for simultaneous nutrient removal and lipids production. Science of The Total Environment, 589, 66-72. doi:10.1016/j.scitotenv.2017.02.206

Barbera, E., Sforza, E., Grandi, A., & Bertucco, A. (2020). Uncoupling solid and hydraulic retention time in photobioreactors for microalgae mass production: A model-based analysis. Chemical Engineering Science, 218, 115578. doi:10.1016/j.ces.2020.115578 [+]
Abu‐Ghosh, S., Dubinsky, Z., & Iluz, D. (2020). Acclimation of thermotolerant algae to light and temperature interaction1. Journal of Phycology, 56(3), 662-670. doi:10.1111/jpy.12964

Arbib, Z., de Godos, I., Ruiz, J., & Perales, J. A. (2017). Optimization of pilot high rate algal ponds for simultaneous nutrient removal and lipids production. Science of The Total Environment, 589, 66-72. doi:10.1016/j.scitotenv.2017.02.206

Barbera, E., Sforza, E., Grandi, A., & Bertucco, A. (2020). Uncoupling solid and hydraulic retention time in photobioreactors for microalgae mass production: A model-based analysis. Chemical Engineering Science, 218, 115578. doi:10.1016/j.ces.2020.115578

De Farias Silva, C. E., de Oliveira Cerqueira, R. B., de Lima Neto, C. F., de Andrade, F. P., de Oliveira Carvalho, F., & Tonholo, J. (2020). Developing a kinetic model to describe wastewater treatment by microalgae based on simultaneous carbon, nitrogen and phosphorous removal. Journal of Environmental Chemical Engineering, 8(3), 103792. doi:10.1016/j.jece.2020.103792

De-Luca, R., Trabuio, M., Barolo, M., & Bezzo, F. (2018). Microalgae growth optimization in open ponds with uncertain weather data. Computers & Chemical Engineering, 117, 410-419. doi:10.1016/j.compchemeng.2018.07.005

Di Caprio, F. (2020). Methods to quantify biological contaminants in microalgae cultures. Algal Research, 49, 101943. doi:10.1016/j.algal.2020.101943

Durán, F., Robles, Á., Giménez, J. B., Ferrer, J., Ribes, J., & Serralta, J. (2020). Modeling the anaerobic treatment of sulfate-rich urban wastewater: Application to AnMBR technology. Water Research, 184, 116133. doi:10.1016/j.watres.2020.116133

Eze, V. C., Velasquez-Orta, S. B., Hernández-García, A., Monje-Ramírez, I., & Orta-Ledesma, M. T. (2018). Kinetic modelling of microalgae cultivation for wastewater treatment and carbon dioxide sequestration. Algal Research, 32, 131-141. doi:10.1016/j.algal.2018.03.015

Fernández, I., Acién, F. G., Guzmán, J. L., Berenguel, M., & Mendoza, J. L. (2016). Dynamic model of an industrial raceway reactor for microalgae production. Algal Research, 17, 67-78. doi:10.1016/j.algal.2016.04.021

Fernández-Sevilla, J. M., Brindley, C., Jiménez-Ruíz, N., & Acién, F. G. (2018). A simple equation to quantify the effect of frequency of light/dark cycles on the photosynthetic response of microalgae under intermittent light. Algal Research, 35, 479-487. doi:10.1016/j.algal.2018.09.026

Foladori, P., Petrini, S., & Andreottola, G. (2018). Evolution of real municipal wastewater treatment in photobioreactors and microalgae-bacteria consortia using real-time parameters. Chemical Engineering Journal, 345, 507-516. doi:10.1016/j.cej.2018.03.178

González-Camejo, J., Barat, R., Aguado, D., & Ferrer, J. (2020). Continuous 3-year outdoor operation of a flat-panel membrane photobioreactor to treat effluent from an anaerobic membrane bioreactor. Water Research, 169, 115238. doi:10.1016/j.watres.2019.115238

González-Camejo, J., Aparicio, S., Jiménez-Benítez, A., Pachés, M., Ruano, M. V., Borrás, L., … Seco, A. (2020). Improving membrane photobioreactor performance by reducing light path: operating conditions and key performance indicators. Water Research, 172, 115518. doi:10.1016/j.watres.2020.115518

González-Camejo, J., Jiménez-Benítez, A., Ruano, M. V., Robles, A., Barat, R., & Ferrer, J. (2019). Optimising an outdoor membrane photobioreactor for tertiary sewage treatment. Journal of Environmental Management, 245, 76-85. doi:10.1016/j.jenvman.2019.05.010

Guldhe, A., Kumari, S., Ramanna, L., Ramsundar, P., Singh, P., Rawat, I., & Bux, F. (2017). Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation. Journal of Environmental Management, 203, 299-315. doi:10.1016/j.jenvman.2017.08.012

Havlik, I., Lindner, P., Scheper, T., & Reardon, K. F. (2013). On-line monitoring of large cultivations of microalgae and cyanobacteria. Trends in Biotechnology, 31(7), 406-414. doi:10.1016/j.tibtech.2013.04.005

Iasimone, F., Panico, A., De Felice, V., Fantasma, F., Iorizzi, M., & Pirozzi, F. (2018). Effect of light intensity and nutrients supply on microalgae cultivated in urban wastewater: Biomass production, lipids accumulation and settleability characteristics. Journal of Environmental Management, 223, 1078-1085. doi:10.1016/j.jenvman.2018.07.024

Lucker, B. F., Hall, C. C., Zegarac, R., & Kramer, D. M. (2014). The environmental photobioreactor (ePBR): An algal culturing platform for simulating dynamic natural environments. Algal Research, 6, 242-249. doi:10.1016/j.algal.2013.12.007

Manhaeghe, D., Michels, S., Rousseau, D. P. L., & Van Hulle, S. W. H. (2019). A semi-mechanistic model describing the influence of light and temperature on the respiration and photosynthetic growth of Chlorella vulgaris. Bioresource Technology, 274, 361-370. doi:10.1016/j.biortech.2018.11.097

Marazzi, F., Bellucci, M., Rossi, S., Fornaroli, R., Ficara, E., & Mezzanotte, V. (2019). Outdoor pilot trial integrating a sidestream microalgae process for the treatment of centrate under non optimal climate conditions. Algal Research, 39, 101430. doi:10.1016/j.algal.2019.101430

Markou, G., Dao, L. H. T., Muylaert, K., & Beardall, J. (2017). Influence of different degrees of N limitation on photosystem II performance and heterogeneity of Chlorella vulgaris. Algal Research, 26, 84-92. doi:10.1016/j.algal.2017.07.005

Martínez, C., Mairet, F., Martinon, P., & Bernard, O. (2019). Dynamics and control of a periodically forced microalgae culture. IFAC-PapersOnLine, 52(1), 922-927. doi:10.1016/j.ifacol.2019.06.180

Pawlowski, A., Guzmán, J. L., Berenguel, M., & Acién, F. G. (2019). Control System for pH in Raceway Photobioreactors Based on Wiener Models. IFAC-PapersOnLine, 52(1), 928-933. doi:10.1016/j.ifacol.2019.06.181

Perin, G., Cimetta, E., Monetti, F., Morosinotto, T., & Bezzo, F. (2016). Novel micro-photobioreactor design and monitoring method for assessing microalgae response to light intensity. Algal Research, 19, 69-76. doi:10.1016/j.algal.2016.07.015

Robles, Á., Capson-Tojo, G., Galès, A., Ruano, M. V., Sialve, B., Ferrer, J., & Steyer, J.-P. (2020). Microalgae-bacteria consortia in high-rate ponds for treating urban wastewater: Elucidating the key state indicators under dynamic conditions. Journal of Environmental Management, 261, 110244. doi:10.1016/j.jenvman.2020.110244

Romero-Villegas, G. I., Fiamengo, M., Acién-Fernández, F. G., & Molina-Grima, E. (2018). Utilization of centrate for the outdoor production of marine microalgae at the pilot-scale in raceway photobioreactors. Journal of Environmental Management, 228, 506-516. doi:10.1016/j.jenvman.2018.08.020

Rossi, S., Casagli, F., Mantovani, M., Mezzanotte, V., & Ficara, E. (2020). Selection of photosynthesis and respiration models to assess the effect of environmental conditions on mixed microalgae consortia grown on wastewater. Bioresource Technology, 305, 122995. doi:10.1016/j.biortech.2020.122995

Rossi, S., Bellucci, M., Marazzi, F., Mezzanotte, V., & Ficara, E. (2018). Activity assessment of microalgal-bacterial consortia based on respirometric tests. Water Science and Technology, 78(1), 207-215. doi:10.2166/wst.2018.078

Ruano, M. V., Ribes, J., Seco, A., & Ferrer, J. (2009). Low cost-sensors as a real alternative to on-line nitrogen analysers in continuous systems. Water Science and Technology, 60(12), 3261-3268. doi:10.2166/wst.2009.607

Salama, E.-S., Jeon, B.-H., Chang, S. W., Lee, S., Roh, H.-S., Yang, I.-S., … Kim, S. (2017). Interactive effect of indole-3-acetic acid and diethyl aminoethyl hexanoate on the growth and fatty acid content of some microalgae for biodiesel production. Journal of Cleaner Production, 168, 1017-1024. doi:10.1016/j.jclepro.2017.09.057

Slegers, P. M., Wijffels, R. H., van Straten, G., & van Boxtel, A. J. B. (2011). Design scenarios for flat panel photobioreactors. Applied Energy, 88(10), 3342-3353. doi:10.1016/j.apenergy.2010.12.037

Solovchenko, A., Khozin-Goldberg, I., Selyakh, I., Semenova, L., Ismagulova, T., Lukyanov, A., … Gorelova, O. (2019). Phosphorus starvation and luxury uptake in green microalgae revisited. Algal Research, 43, 101651. doi:10.1016/j.algal.2019.101651

Sutherland, D. L., Park, J., Ralph, P. J., & Craggs, R. J. (2020). Improved microalgal productivity and nutrient removal through operating wastewater high rate algal ponds in series. Algal Research, 47, 101850. doi:10.1016/j.algal.2020.101850

Tripathi, B. N., & Kumar, D. (Eds.). (2017). Prospects and Challenges in Algal Biotechnology. doi:10.1007/978-981-10-1950-0

Viruela, A., Robles, Á., Durán, F., Ruano, M. V., Barat, R., Ferrer, J., & Seco, A. (2018). Performance of an outdoor membrane photobioreactor for resource recovery from anaerobically treated sewage. Journal of Cleaner Production, 178, 665-674. doi:10.1016/j.jclepro.2017.12.223

Wágner, D. S., Valverde-Pérez, B., & Plósz, B. G. (2018). Light attenuation in photobioreactors and algal pigmentation under different growth conditions – Model identification and complexity assessment. Algal Research, 35, 488-499. doi:10.1016/j.algal.2018.08.019

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem